CSEM Area A-CAM Preliminary Exam (CSE 386C-D)

May 31, 2018, 9:00 a.m. - 12:00 noon

Work any 5 of the following 6 problems.

1. The set X of all sequences $\{x_n\}_{n=1}^{\infty}$ of complex numbers is a vector space. Let $0 < p < 1$ and let $X \subset \mathcal{X}$ be the set of all sequences $\{x_n\}_{n=1}^{\infty}$ such that $\sum_{n=1}^{\infty} |x_n|^p < \infty$.

- (a) Show that X is a vector space. [Hint: Show that $|x+y|^p \leq 2^{p-1}(|x|^p + |y|^p)$.]
- (b) Show that the map taking $\{x_n\}_{n=1}^{\infty} \in X$ to $\left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p}$ is not a norm on X.

(c) Show that the map $d: X \times X \to \mathbb{R}$ defined by $d(\lbrace x_n \rbrace_{n=1}^{\infty}, \lbrace y_n \rbrace_{n=1}^{\infty}) = \sum_{n=1}^{\infty} |x_n - y_n|^p$ is a metric on X .

- 2. Open Mapping Theorem.
- (a) State the Open Mapping Theorem.
- (b) Suppose that $\|\cdot\|$ and $\|\cdot\|'$ are two norms on a vector space X. Suppose that both $(X, \|\cdot\|)$ and $(X, \|\cdot\|')$ are complete and there is a constant $C > 0$ such that

$$
||x|| \le C||x||' \text{ for all } x \in X.
$$

From the Open Mapping Theorem, show that the two norms are equivalent.

3. Let $\Omega = [a, b]$, $p, q \in (1, \infty)$, and $\frac{1}{p} + \frac{1}{q} = 1$. Let $v \in L^q(\Omega)$. For every $u \in L^p(\Omega)$ define a function Au by setting

$$
(Au)(t) = \int_a^t v(s) u(s) ds \quad \text{for all } t \in \Omega.
$$

- (a) Show that A maps $L^p(\Omega)$ into $L^p(\Omega)$ and is continuous.
- (b) Explain why $A: L^p(\Omega) \to L^p(\Omega)$ is compact.

4. Suppose (X, d_X) and (Y, d_Y) are metric spaces, Y is complete, $A \subset X$ is dense, and $T: A \to Y$ is uniformly continuous. Prove that there is a unique extension $\tilde{T}: X \to Y$ which is uniformly continuous.

5. Let $\Omega \subset \mathbb{R}^d$ be a bounded domain, $f \in L^2(\Omega)$, and $\epsilon > 0$. Suppose u_{ϵ} satisfies

$$
-\epsilon \Delta u_{\epsilon} + u_{\epsilon} = f \quad \text{in } \Omega,
$$

$$
u_{\epsilon} = 0 \quad \text{on } \partial \Omega.
$$

Show $u_{\epsilon} \to f$ in $L^2(\Omega)$ as $\epsilon \to 0$. [Hint: Bound appropriate norms of u_{ϵ} and $\sqrt{\epsilon}u_{\epsilon}$.]

6. Let $\Omega \subset \mathbb{R}^d$ be a bounded domain with a smooth boundary and outer unit normal ν . Let *b* a constant vector and $f \in L^2(\Omega)$. Consider the fourth order problem

$$
u + \Delta^2 u + b \cdot \nabla u = f \quad \text{in } \Omega,
$$

$$
u = 0 \quad \text{and} \quad \nabla u \cdot \nu = 0 \quad \text{on } \partial \Omega.
$$

- (a) State the Lax-Milgram Theorem for a real Hilbert space.
- (b) Develop a suitable variational form for the problem. [Be careful to handle the boundary values and define the Hilbert spaces you use.
- (c) Give a hypothesis on $|b|$ so that the Lax-Milgram theorem provides a unique solution to your variational problem. [Hint: Gårding's inequality gives a $C_G > 0$ such that $||v||_{H^2}^2 \leq C_G \{||u||^2 + ||\Delta u||^2\}$ for all $v \in H_0^2$.]

CSEM AreaA-CAM Prellin May 2018 Area A-CAM Solutions **May 2018 Solutions** $\frac{1}{n} \frac{0}{n} \frac{1}{n} \frac{1}{n} \sum_{i=1}^n |x_i|^2 \leq \infty$ (a) (i) $\{x_{n}\} + \{y_{n}\} = \{x_{n} + y_{n}\}$ $f(\frac{1}{x+y}) < \frac{1}{2}(f(x) + f(x))$ $\overline{\mathbf{x}}$ 1 $x+y^2$ $x+y^2$ \Rightarrow $\sum |x^{\nu}+x^{\nu}|_p \leq \sum_{b-1} \left(\sum x^{\nu}+ \sum x^{\nu}+x^{\nu}\right)$ $<\infty$ (i) $d\{x_{n}\} = \frac{2}{3}d\{x_{n}\}$ $\sum |x^{\alpha}|^p = \alpha^p \sum |x_{\alpha}|^p < \infty$ (b) Consider the \triangle ineg. For
 $x = (100 - 1)$ and $y = (0.100 - 1)$
 $\Rightarrow (z + xy)(P)^{10} = 2^{10} > 2$
 $\Rightarrow (z + xy)(P)^{10} = 2^{10} > 2$ $\frac{2^{1/p}}{2^{1/p}} > 2, \text{ so } \frac{1}{\sqrt{p}} \qquad \text{or } \qquad \text{AOP}$ (c) $d(x,y) = \sum |x_{1}-y_{1}|^{p}$ (i) d(x) > OV, d(x x) = O < x = yn Vn V. $\frac{d(x,y)}{dx} = \frac{d(x,y)}{y}$ see (à

Area A-CAM May 2018 Solutions2. Open Mapping
(a) Let X, Y be Banach It TIX -> Y is bounded, Incar, surjective (b) 11.11, 11.11, (x, 11.11) & (x, 11.11) complete. $\|x\| \le C \|x\|' \quad \forall x \in X.$ Consider Where it is tourded, wright and the land linear) ON THE CHANGE SONO ON ON SOLUTION 500 $Givm \times K$ $\frac{\epsilon X}{2\|x\|} \in B_{\epsilon} \cap B_{1}$ $\Rightarrow \frac{1}{2} \left\| \frac{x}{\|x\|} \right\|' \leq 1 \Rightarrow \left\| x \right\|' \leq \frac{2}{5} \left\| x \right\|'.$ Thus the norms are equivalent.

Area A-CAM May 2018 Solutions

3, $\Omega = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{$ $a)$ A: \rightarrow LPLQ $\int_{b}^{b}[(Au)(t)]^{2} = \int_{a}^{b} \int_{a}^{b}v(s)u(s)ds\int dt$ $\leq \int_{\alpha}^{b} (\|v\|_{\beta} \|v\|_{p})^{p} d\tau$ $\leq (b-a)^{10}\left\|v\right\|_{3}^{p} \|v\|^{p}$ $\|A\nu\|_{p} \leq C_{b} \sim \sqrt[p]{p} \|v\|_{p} \|v\|_{p}$ So A mape into L^P and is continuous. $Ault) = \int_{\alpha}^{d} V(s) \frac{\gamma(s)}{s} ds \frac{1}{s^{2}} ds \frac{1}{s^{2}}$ $GL^{2}(\Omega,\Omega)$ Va density of CCO) in Li LB $A_{j}u = lim_{k} A_{j}u_{k}$, $A_{j}:C(l) \rightarrow C(l)$ A: L"> L" compact by density.
A: L"> L" compact by density.

Area A-CAM May 2018 Solutions

4. X, Y metric, Y complete, A EX denee VEDO ISE DE VAJEA,
dy (Tx, Ty) << whenever dx (x, y) < Se Let x EX and x 3 x & CA $\frac{C[win: \frac{5}{100}]^{2}}{C[win: \frac{5}{100}]^{2}} \cdot \frac{Cavehy}{Cavehy} \times \frac{1}{21} \times 0 \text{ s.t. } d(\pi_{n1}\pi_{n}) < S_{\epsilon} \times 10^{-10} \text{ s.t. } d(\pi_{n1}\pi_{n}) < S_{\epsilon} \$ Claim: T unit cont. It so, then I x= Ix VxEA and I Is unique (sino A dense) Now ditry $\frac{1}{4}$ = $\frac{1}{4}$ = $\frac{1}{4}$ = $\frac{1}{4}$ = $\frac{1}{4}$ = $\frac{1}{4}$ = $\frac{1}{4}$ Admy where me and an your and in the Os neads OCK 7I $\frac{d_{x}(x,y_{m})}{dx}(x,y_{m})+d_{y}(x,y_{m})+d_{x}(y,y_{m})}{<\frac{2}{x}(x,y_{m})+d_{y}(x,y_{m})+d_{x}(y,y_{m})}{<\frac{2}{x}(x,y_{m})+d_{y}(x,y_{m})+d_{x}(y,y_{m})}{<\frac{2}{x}(x,y_{m})+d_{x}(x,y_{m})+d_{x}(y,y_{m})+d_{x}(y,y_{m})+d_{x}(y,y_{m})+d_{x}(y,y_{m})+d_{x}(y,y_{m})+d_{x}(y,y_{m})+d_{x}(y,y_{m})+d_{x}(y,y_{m})+d_{x}(y,y_{$ \Rightarrow $d_{y}(fx,\widetilde{Tx}) \leq 3\epsilon$. For n,m large.

Area A-CAM May 2018 Solutions $5, \Omega SR^d, FEL^2, E>0$ $-26(0=34 \text{ K}^2-\frac{1}{20}t^2-\frac{1}{34}t+\frac{1}{34}\Delta t^2)$ Equiv. variational form is. $\frac{e(\nabla u,\nabla v)+(u_{s}v)=(\nabla v) \quad \forall v\in H_{o}^{1}(\alpha)}{e(\nabla u,\nabla v)}$ $v = v_c \implies$ $\epsilon\|\nabla u_{\epsilon}\|^{2}+\|\nabla u_{\epsilon}\|^{2}=\left(\mathfrak{f},u_{\epsilon}\right)\leq \|\mathfrak{f}\| \|u_{\epsilon}\|$ $\leq \frac{1}{2}||\xi||^{2} + \frac{1}{2}||\xi||^{2}$ $E\|\nabla u_t\|^2 + \frac{1}{L}\|u_t\|^2 \leq \frac{1}{L}\|f_t\|^2$ \Rightarrow \Rightarrow 15 y bounded in H. We a M 12
Ve V II 2
Ve V II 12
Ve V V II 3 F V 3 M 2 \Rightarrow $\frac{\sqrt{\epsilon}u}{\sqrt{\epsilon}v} \rightarrow 0 \Rightarrow g=0$ But Thus $O + (u, v) = (f, v) \quad \forall v \in H_o^1(\Omega)$ $(u-f, v) = 0$ = $v = f$ \Rightarrow

Area A-CAM May 2018

Solutions $6.$ Ω \subseteq \mathbb{R}^{d} 6 , f \subset L^{2} $\begin{array}{rrrrr}\n\sqrt{u+2^2u+6\cdot 7u}=f&\Omega\\ \n\sqrt{u+2^2u+6\cdot 7u}=0&\Omega\end{array}$ (a) Let It be a real Hillest space with the lastilities et. (c) $|B(x,y)| \leq M ||x|| ||y||$ $\forall x,y \in \mathcal{H}$ (convive) If $x_0 \in H$, FEH^{*}, the Illettro st.
B(y)= F(y) +vEH. (6) FAD WE H = {WEH : W=0, $\vec{v}w$ = 0 on $d223$ st
(6) FAD WE H = {wEH : W=0, $\vec{v}w$ = 0 on $d223$ st
(6) FAD WE H = {wEH : W=0, $\vec{v}w$ = 0 on $d223$ st (c) LHS = B(V,V), Which is can't For corrivity: $||u||^2 + ||\Delta u||^2 + (b \cdot \nabla u, u)$ $\begin{array}{rcl}\n\ge & & ||u||_{+} ||\Delta u||^{2} - ||u|| ||\n\hline\n\ge & & ||u||_{+} ||\Delta u||^{2} - \frac{\mu}{2} ||u|^{2} ||\n\hline\n\ge & & ||u||_{+} ||\Delta u||^{2} - \frac{\mu}{2} ||u|^{2} ||\n\hline\n\ge & & ||\n\hline\n\ge & & ||u||_{+} ||\Delta u||^{2} - \frac{\mu}{2} ||u||^{2} ||\n\hline\n\ge & & ||\n\hline\n\end{array}$ $Now C(||u||^2 + ||\Delta u||^2) \ge ||\nabla u||^2 \implies Nved$

CSEM Area A-CAM Preliminary Exam (CSE 386C–D)

May 30, 2019, 9:00 a.m. – 12:00 noon

Work any 5 of the following 6 problems.

1. Let X be a Banach space with dual space X^* and duality pairing $\langle \cdot, \cdot \rangle$, and let A, B : $X \to X^*$ be linear maps.

- (a) State the Closed Graph Theorem and what it means for an operator to be closed.
- (b) Assuming $\langle Ax, y \rangle = \langle Ay, x \rangle$ for all $x, y \in X$, show that A is bounded.
- (c) Assuming $\langle Bx, x \rangle \geq 0$ for all $x \in X$, show that B is bounded. [Hint: Suppose B is not continuous at 0, so $x_n \to 0$ but $Bx_n \to y \neq 0$. For $w \in X$ such that $\langle y, w \rangle > 0$, consider $x_n + \epsilon w.$

2. Let $\Omega = [0, 1]$ and $1 \leq p < \infty$ be given and consider the sequence of functions $g_n \in L^p(\Omega)$ defined by $g_n(x) = n^{1/p} e^{-nx}$. Show that as $n \to \infty$:

- (a) $g_n(x)$ converges pointwise to zero for each fixed $x \in (0, 1]$ and for any $p \ge 1$;
- (b) g_n does not converge strongly to zero in $L^p(\Omega)$ for any $p \geq 1$;
- (c) g_n converges weakly to zero in $L^p(\Omega)$ if $p > 1$, but not if $p = 1$.

3. Prove the Mazur Separation Lemma, which says that if X is a normed linear space, Y a linear subspace of X, $w \in X$ but $w \notin Y$, and

$$
d = \text{dist}(w, Y) = \inf_{y \in Y} ||w - y||_X > 0,
$$

then there exists $f \in X^*$ such that $||f||_{X^*} \leq 1$, $f(w) = d$, and $f(z) = 0$ for all $z \in Y$. [Hint: Begin by working in $Z = Y + \mathbb{F}w$.

4. Let $\Omega = (0, 1)^2$ and consider the boundary value problem (BVP)

$$
-u_{xx} + u_{xy} - u_{yy} = f \quad \text{in } \Omega,
$$
\n⁽¹⁾

$$
-u_x + u_y - u = g \quad \text{on } \Gamma_L = \{(0, y) : y \in (0, 1)\},\tag{2}
$$

$$
u = 0 \quad \text{on } \Gamma_* = \partial\Omega \setminus \Gamma_L. \tag{3}
$$

Let $H = \{v \in H^1(\Omega) : v = 0 \text{ on } \Gamma_*\},\$ which is a Hilbert space.

- (a) Find the corresponding variational problem for $u \in H$ and test functions $v \in H$. Also give the function spaces containing f and g .
- (b) Show the general Poincaré type inequality: There exists $\gamma > 0$ such that

$$
\|\nabla v\|_{L^2(\Omega)}^2 + \int_{\Gamma_L} v^2 \ge \gamma \|v\|_{L^2(\Omega)}^2 \quad \forall v \in H.
$$

(c) Show that there is a unique solution to the variational problem.

5. For fixed $T > 0$, let $g : [0, T] \times \mathbb{R}^d \to \mathbb{R}^d$ be continuous and Lipschitz continuous in the second argument, i.e., there is some $L > 0$ such that

 $||g(t, v) - g(t, w)|| \le L ||v - w|| \quad \forall v, w \in \mathbb{R}^d, t \in [0, T],$

where $\|\cdot\|$ is the norm on \mathbb{R}^d . For any $u_0 \in \mathbb{R}^d$, consider the initial value problem (IVP) $u'(t) = g(t, u(t))$ and $u(0) = u_0$.

- (a) Write this IVP as the fixed point of a functional $G: C^0([0,T]; \mathbb{R}^d) \to C^0([0,T]; \mathbb{R}^d)$.
- (b) Normally, we use the $L^{\infty}([0,T])$ -norm for $C^0([0,T];\mathbb{R}^d)$. Show that the function $|||\cdot|||$: $C^0([0,T];\mathbb{R}^d) \to [0,\infty)$, defined by

$$
|||v||| = \sup_{0 \le t \le T} (e^{-Lt} ||v(t)||),
$$

is a norm equivalent to the $L^{\infty}([0,T])$ -norm.

- (c) In terms of this new norm, show that G is a contraction.
- (d) Explain how we conclude that there is a unique solution $u \in C^1([0,\infty);\mathbb{R}^d)$ to the IVP for all time.
- **6.** Consider finding extremals to the problem: Find $u, v \in C_{0,1}^1([0,1])$ minimizing

$$
F(u, v, u', v') = \int_0^1 ((u')^2 + (v')^2 + 2uv) dx.
$$

- (a) Find the Euler-Lagrange (EL) equations for this problem.
- (b) Reduce the EL equations to a single equation and find its solution. [Hint: The fourth roots of unity are ± 1 and $\pm i$.
- (c) Find the extremal to the problem, up to solving a 4×4 system of linear equations.

(d) If we add the constraint that
$$
\int_0^1 u^2v' dx = 0
$$
, what EL equations do we get?

Area A-CAM May 2019 Solutions

1. X Banach, AB: X -> X" linear. (a) Closed Oraph Theorem: Let X and Y be Benach spaces and T:X->Y
Ineuro Then: T is continuous (bided) beeds $z_1 \perp \iff z_2$ OF TIME X 2 2 2 2 2 2 10 2 1020/2 21 T $Mr = \frac{1}{x} = \frac{1}{x}$ (b) $\langle Ax,y\rangle = \langle A,y,x\rangle \quad \forall x,y\in X$ => Ax=y, and A continuous (baded) (c) $\langle Bx,x\rangle \ge 0$ $\forall x \in X$ 3 ETS for x 30, Bx 34 = 0
ETS for x 30, Bx 34 = 0 Consider $0 \leq \langle B(x_{n} + \epsilon w), x_{n} + \epsilon w \rangle$ $\rightarrow \langle y + \epsilon B w, \epsilon w \rangle$ \geq Let $\frac{1}{10}$ so lest tem negligible. 0 So g=0 and B cont.

Area A-CAM May 2019 Solutions2. $\Omega = \text{LO}/\text{I}$, $1 \leq \rho < \infty$, $\text{GL}(x) = n^{\prime \rho} e^{-n\chi}$ (a) $\frac{\gamma}{\gamma} = \frac{\gamma}{e^{\gamma x}} \rightarrow \frac{\gamma}{e^{\gamma x}} \rightarrow 0.$ (b) $||g_{n}||_{p}^{p} = \int_{0}^{1} n e^{-npx} dx = -\frac{1}{p} e^{-npx}$ $=$ $\frac{1}{\rho}(1-e^{-n\rho})$ \Rightarrow $\frac{1}{\rho} \neq 0.$ So an to 0.

(c) Let the LB, $A + \frac{1}{2}$

It p>1, then Ly density suppose help

Then I x, >0 at h(x) =0 for x<xx. $\frac{Now}{S} \left|\begin{array}{c} 1 \\ \frac{3}{2} \\ \frac{9}{2} \end{array}\right| \left|\begin{array}{c} 1 \\ \frac{1}{2} \\ \frac{1}{2} \end{array}\right| \left|\begin{array}{c$ OSA exogre as Note $\frac{d}{dr}(n^{\nu}e^{-ny}h) = n^{\nu}e^{-nx}(\frac{1}{\rho n}x)h$ $\leqslant 0 \text{ for } n \text{ lagt enough and}$ Thus gah is monotone, so MCT=> live Jank = J linget = D. $DM + 12$, $90 - 0$. But for $\rho=1$, $(L^{\prime})^{\ast}=L^{\infty}$. Consider $h\equiv1$. Then $\int_{0}^{1} n e^{-nx} = -e^{-nx} \Big|_{0}^{1} = \Big| -e^{-nx} \Big| + O_{0}$

Area A-CAM May 2019

Solutions3. X NLS, Y In. subsp., WEXIY. $d = dist(w, Y) = \frac{1}{2} \frac$ $\frac{W_{01}k \cdot \hat{n}}{zeZ} \geq \frac{Z=Y+FW}{xE} \geq \frac{1}{2}k.$ $\frac{z}{2} = \frac{1}{4} \times 10$

(for otherwise $Y \ni y - y' = (1 - 2) \cup 4$)

(for otherwise $Y \ni y - y' = (1 - 2) \cup 4$)

Let $g : Z \rightarrow F$

Let $g : Z \rightarrow F$

(well defined)

(g(g+2w) g $\frac{1}{2} \times 1 = \frac{1}{2} \times 1000$

(g(g+2w) $g = \frac{1}{2} \times 1000$

(lig $= \frac{1}{2}e^{i\theta} \frac{1-2e+2\omega}{1-2e+2\omega} \leq 1.$ \Rightarrow $||g|| \leq |$ Extend (using Hahn-Banach) to X.

Area A-CAM May 2019

Solutions 4. $\Omega = (0,1)^2$ $\begin{array}{|c|c|c|c|c|}\n\hline\n\text{H} & \text{L} & \text{L} & \text{L} & \text{L} & \text{L} \\
\hline\n\text{L} & \text{L} & \text{L} & \text{L} & \text{L} & \text{L} \\
\hline\n\text{L} & \text{L} & \text{L} & \text{L} & \text{L} \\
\hline\n\text{L} & \text{L} & \text{L} & \text{L} & \text{L} \\
\hline\n\text{L} & \text{L} & \text{L} & \text{L} & \text{L} \\
\hline\n\$ (a) (u_{\times},v_{\times}) - $\langle u_{\times},v\rangle$ $-Cu_{y}, v_{x}\rightarrow+Cu_{y}, v\rangle_{p}$ $+$ (ug, vg) - = = (f, v \Rightarrow $B(\psi_{\mathcal{N}})=(\psi_{\mathcal{N}},\psi_{\mathcal{N}})-(\psi_{\mathcal{N}},\psi_{\mathcal{N}})+(\psi_{\mathcal{N}},\psi_{\mathcal{N}})+\langle\psi,\psi\rangle$ $= (F_{V}) - \angle g_{V} \overline{r_{L}}$
 $S \quad \text{f.e. } H^* g \in (H'^{Z_{L}}) \backslash \mathbb{R} \longrightarrow T_{L}$ (b) Suppose not, so $\frac{1}{2}$ $\frac{V_{V_{A}}\rightarrow O}{V_{V_{A}}\rightarrow O}\xrightarrow{\int_{I_{A}}V_{A}^{2}\rightarrow O}$
 $\frac{V_{V_{A}}\rightarrow O}{V_{A}\rightarrow V_{A}}\xrightarrow{\int_{I_{A}}V_{A}^{2}\rightarrow V}$
 $\frac{V_{V_{A}}\rightarrow V_{A}\rightarrow V_{A}}{V_{A}\rightarrow V_{A}}\xrightarrow{\int_{I_{A}}V_{A}^{2}\rightarrow V}$ which controdicts $||v_{n}||_{L^{2}}=1.$ (c) Lax-Milorom, Linear form good by f_{a} .
Continuity: $|B(u,v)| \le (||u_x|| + ||u_y||) (||x|| + ||v_y||)^2 + ||u|| ||w||$ $\frac{(\arcsin \frac{1}{2})^2 + (\arccos \frac{$

Area A-CAM May 2019 **Solutions**

 $5. u' = g(t u(t))$ $u(0) = u_0$
(a) $u(t) - u(0) = \int_0^t g(t, u(t)) dt$ $G(u) = u_0 + \int_0^t q(s, u(s)) ds$ (b) $|||v||| = \frac{sup.}{05+5T} (e^{-Lt}||v(t)||)$ $\frac{1}{\|f\|_{\infty}}\|f\|_{\infty}+\|f\|$ so III.III equiv. to 11.110 => $\begin{array}{rcl}\n\hline \text{Suding} & \text{clary} & \text{okay} \\
\hline\n\text{|| } & \text{|| } & \text{Lip} & \text{Lip} \\
\hline\n\text{|| } & \text{Lip} & \text{Lip} & \text{Lip} \\
\hline\n\text{|| } & \text{Lip} & \text{Lip} & \text{Lip} \\
\hline\n\text{|| } & \text{Lip} & \text{Lip} & \text{Lip} \\
\hline\n\text{|| } & \text{Lip} & \text{Lip} & \text{Lip} & \text{Lip} \\
\hline\n\text{|| } & \text{Lip} & \text{Lip} & \$ $||w|| + ||w|| =$ $\Rightarrow ||\theta(v)-G(w)||| \leq \theta |||v-w|||, \quad \theta = |-e^{-\xi t} < 1.$ Banach contraction mappin Thim => 31
u = (° ([0 T]) st. GW = u (re., IVP)
But + u = (°, Than GW) = C' d \Rightarrow we c' F_{null_j} , let $\top \rightarrow \infty$.

Area A-CAM May 2019 6. $xyv \in C'_{9,1}([0,1])$, $F(uyu'_{1}v') = \sqrt{[u']^{2}+(v')^{2}+2uv]dx}$ **Solutions** (a) $f_{\omega} = (f_{\omega})$, $i=1,2$ $\begin{array}{c}\n\zeta 2\nu = 2\nu'' - \zeta \nu = \nu'' \\
\zeta 2\nu = 2\nu'' - \zeta \nu = \nu'' \\
\zeta 2\nu = 2\nu'' - \zeta \nu = \nu''\n\end{array}$ (b) $u = v'' = u'''$ $\frac{u=e^{rb}}{m(x)} = Ae^{x} + Be^{-x} + Ce^{ix} + De^{-ix}$ $= u''$
= $Ae^{x} + Be^{-x} - Ce^{ix} - De^{ix}$ (c) $V(x) = W''$ $u(0) = A+B+C+D=0$
 $u(1) = Ae + Be¹ + Ce² + De¹ = 1$ $v(b) = A + B - C - D = 0$
 $v(l) = Ae + Be^{-1} - Ce^{i} - De^{-i} = 1$ (d) $H = \int_{0}^{1} [u^{\prime}]^{\frac{2}{+}} (v^{\prime})^{\frac{2}{+}} 2uv + \lambda u^2 v^{\prime}] dx$

CSEM Area A-CAM Preliminary Exam (CSE 386C–D)

August 7, 2020, about any 3 hours from 9:00 a.m. – 3:00 p.m.

You may use the class textbooks and your own notes on this exam.

Work any 5 of the following 6 problems.

- 1. A problem on continuous operators.
- (a) Define the topological dual of a Banach space.
- (b) Define the weak topology on a Banach space.
- (c) Let X, Y be Banach spaces and $A: X \to Y$ be a linear operator. Prove that A is continuous if an only if it is weakly continuous (i.e., it is continuous when X and Y are equipped with their weak topologies).

Solution.

(a) The topological dual X' of a normed space X consists of all linear and continuous functionals defined on X . For a complex space X , we may define the topological dual as the space of all *anti*-linear and continuous functionals on X . Either space is equipped with the norm

$$
l \in X', \quad ||l||_{X'} := \sup_{x \in X, x \neq 0} \frac{|l(x)|}{||x||_X} = \sup_{||x||_X \leq 1} |l(x)| = \sup_{||x||_X = 1} |l(x)|.
$$

For a reflexive Banach space, the supremum is actually attained and can be replaced with maximum. The dual space is always complete, no matter whether X is complete or not.

(b) The weak topology on a Banach space X is a locally convex topology defined by a family of seminorms

$$
X \ni x \mapsto |\langle x', x \rangle| = |x'(x)|, \quad x' \in X'.
$$

Due to the definitness of the duality pairing (proved using Hahn-Banach Theorem), the family of seminorms satisfies the axiom of separation which implies that the weak topology is well-defined.

(c) We first prove that weak continuity of A implies strong continuity of A. Assume, to the contrary, that there exists a sequence x_n such that $||x_n||_X \to 0$ but $||Ax_n||_Y \to 0$. At the cost of replacing x_n with a subsequence, we can assume that there exists $\epsilon > 0$ such that $||Ax_n||_Y \geq \epsilon$. Define,

$$
\bar{x}_n = \frac{x_n}{\|x_n\|_X^{1/2}}.
$$

Then,

$$
\|\bar{x}_n\|_X = \|x_n\|_X^{1/2} \to 0
$$
 and $\|A\bar{x}_n\|_Y \to \infty$.

As the strong convergence implies weak convergence, $\bar{x}_n \rightharpoonup 0$ and, by weak continuity of A, $A\bar{x}_n \rightharpoonup 0$ in Y. But every weakly convergent sequence must be bounded, a contradiction.

Assume now that A is strongly continuous.

Lemma: Let X be an arbitrary topological vector space, and Y be a normed space. Let $A \in \mathcal{L}(X, Y)$. The following conditions are equivalent to each other.

(i) $A: X \to Y$ (with weak topology) is continuous.

(ii) $f \circ A : X \to \mathbb{R}(\mathbb{C})$ is continuous $\forall f \in Y'.$

(i) \Rightarrow (ii). Any linear functional $f \in Y'$ is also continuous on Y with weak topology. Composition of two continuous functions is continuous.

(ii) \Rightarrow (i). Take an arbitrary $B(I_0, \epsilon)$, where I_0 is a finite subset of Y'. By (ii),

 $\forall g \in I_0 \exists B_g$, a neighborhood of **0** in $X : x \in B_g \Rightarrow |g(A(x))| < \epsilon$.

It follows from the definition of filter of neighborhoods that

$$
B = \bigcap_{g \in I_0} B_g
$$

is also a neighborhood of 0. Consequently,

 $x \in B \Rightarrow |q(A(x))| < \epsilon \Rightarrow Ax \in B(I_0, \epsilon).$

To conclude the final result, it is sufficient now to show that, for any $g \in Y'$,

 $g \circ T : X$ (with weak topology) $\rightarrow \mathbb{R}$

is continuous. But $g \circ T$, as a composition of continuous functions, is a strongly continuous linear functional and, consequently, it is continuous in the weak topology as well (compare the discussion in the book).

2. Projections on a Hilbert space. Let X and Y be Hilbert spaces, $P: X \rightarrow Y$ and $Q: Y \to X$ be bounded linear operators, and suppose that $QP: X \to X$ is an orthogonal projection operator. Let $U_1 = R(QP)$ and $U_2 = N(QP)$, i.e., the image (or range) and null space (or kernel) of the operator, respectively. Moreover, let $V_1 = R(P)$.

- (a) What does it mean to say $X = U_1 \oplus U_2$? Show that U_1 and U_2 are orthogonal to each other.
- (b) Prove that U_1 and V_1 are isomorphic.
- (c) Show directly that $P^*Q^*: X \to X$ is an orthogonal projection.
- (d) If $N(Q) \cap R(PQ) = \{0\}$, show that $PQ: Y \to Y$ is a projection operator (not necessarily orthogonal).

Area A-CAM Aug 2020 w/ solutions

Solution.

(a) The symbols $X = U_1 \oplus U_2$ mean that $X = \{u_1 + u_2 : u_i \in U_i, i = 1, 2\}$ and $U_1 \cap U_2 = \{0\}.$ For $u_i \in U_i$, we know that $u_1 = QPu_1$ and $QPu_2 = 0$, so

$$
\langle u_1, u_2 \rangle_X = \langle QPu_1, u_2 - QPu_2 \rangle_X = 0
$$

by the definition of orthogonal projection.

- (b) Consider the map $T = P|_{U_1} : U_1 \to V_1$, that is bounded and linear. Every $v \in V_1$ has some $u \in X$ such that $Pu = v$. However, there are (unique) $u_i \in U_i$ such that $u = u_1 + u_2$, and so $Tu_1 = Pu_1 = Pu = v$ shows that T maps onto V_1 . To finish, we need to show that T maps one-to-one, i.e., that $Tu_1 = 0$ implies that $u_1 = 0$. But $0 = Tu_1 = Pu_1$, so also $QPu_1 = 0$. Thus $u_1 \in U_1 \cap U_2$, and so $u_1 = 0$.
- (c) For $u, w \in X$, we compute

$$
0 = \langle QPu - u, w \rangle_X = \langle u, P^*Q^*w - w \rangle_X,
$$

which shows that P^*Q^* is also an orthogonal projection operator.

(d) For $y \in Y$, we know that $QPQPQy = QPQy$, since QP is a projection. But then

$$
0 = QPQPQy - QPQy = Q(PQPQy - PQy) = QP(QPQy - Qy).
$$
Thus $PQPQy - PQy \in N(Q)$ and clearly $PQPQy - PQy \in R(PQ)$, so $PQPQy = PQy$.

3. Hilbert basis. Let H be a separable Hilbert space and let $\{e_n\}_{n=1}^{\infty}$ be a maximal orthonormal set (i.e., a Hilbert basis). Let $\{\lambda_n\}_{n=1}^{\infty}$ be a bounded sequence of real numbers, and define the linear operator $A: H \to H$ by

$$
Ax = \sum_{n=1}^{\infty} \lambda_n \langle x, e_n \rangle e_n.
$$

- (a) Show that A is continuous and self-adjoint.
- (b) Show that each λ_n is an eigenvalue with eigenvector e_n .
- (c) Show that if $\lambda_n \to 0$, then A is compact. [Hint: Consider the operator A_N defined by a truncated sum, and show that A_N converges to A.

Solution.

(a) If
$$
x_m \to 0
$$
, then $||x_m||^2 = \sum_{n=1}^{\infty} |\langle x_m, e_n \rangle|^2 \to 0$. Thus

$$
||Ax_m|| = \sum_{n=1}^{\infty} |\lambda_n|^2 |\langle x, e_n \rangle|^2 \le \max_n |\lambda_n|^2 \sum_{n=1}^{\infty} |\langle x_m, e_n \rangle|^2 \to 0.
$$

That is, A is continuous at 0, and so continuous everywhere. Now

$$
\langle Ax, y \rangle = \sum_{n=1}^{\infty} \lambda_n \langle x, e_n \rangle \overline{\langle y, e_n \rangle} = \sum_{n=1}^{\infty} \langle x, e_n \rangle \overline{\lambda_n \langle y, e_n \rangle} = \langle x, Ay \rangle
$$

is clearly self adjoint (since λ_n is real).

Area A-CAM Aug 2020 w/ solutions

(b) Compute

$$
(A - \lambda I)x = \sum_{n=1}^{\infty} \lambda_n \langle x, e_n \rangle e_n - \lambda \sum_{n=1}^{\infty} \langle x, e_n \rangle e_n = \sum_{n=1}^{\infty} (\lambda_n - \lambda) \langle x, e_n \rangle e_n,
$$

and note that this cannot be invertible when $\lambda = \lambda_n$ for some n. Moreover, $Ae_n = \lambda_n e_n$ is clear by orthonormality of the basis.

(c) Consider the operators

$$
A_N x = \sum_{n=1}^N \lambda_n \langle x, e_n \rangle e_n.
$$

Each has finite dimensional range, and is hence compact. Moreover,

$$
||A_Nx - Ax||^2 = \Big\|\sum_{n=N+1}^{\infty} \lambda_n \langle x, e_n \rangle e_n\Big\|^2 = \sum_{n=N+1}^{\infty} |\lambda_n|^2 |\langle x, e_n \rangle|^2 \to 0,
$$

so $A_n \to A$ and A is compact.

4. Closed operators. All spaces are real. Consider the operator

$$
A: D(A) \to L^{2}(0, 1), \quad Au = u' + u,
$$

$$
D(A) := \{u \in L^{2}(0, 1) : Au \in L^{2}(0, 1), \ u(0) = 0, \ u(1) = 0\},\
$$

where the derivative is understood in the sense of distributions.

- (a) Interpret $D(A)$ in terms of Sobolev spaces.
- (b) Show that A is a closed operator.
- (c) Prove that A is bounded below in $L^2(0,1)$.
- (d) Compute the L²-adjoint A^* , $L^2(0,1) \supset D(A^*) \ni v \mapsto A^*v \in L^2(0,1)$.
- (e) Compute the null space of the adjoint operator A[∗] .
- (f) For an appropriate right-hand side f , discuss the well-posedness of the problem:

$$
\begin{cases} u \in D(A), \\ Au = f. \end{cases}
$$

Solution.

(a) We have

$$
u, u' + u \in L^2(0, 1)
$$
 \Leftrightarrow $u, u' \in L^2(0, 1)$ \Leftrightarrow $u \in H^1(0, 1)$.

Consequently, $D(A) = H_0^1(0, 1)$.

(b) We need to show that

$$
D(A) \ni u_n \to u, \quad Au_n \to w \quad \Rightarrow \quad u \in D(A), \, Au = w \, .
$$

All convergence is in the L^2 -sense. Let $\phi \in \mathcal{D}(0,1)$. We have

$$
(u_n, -\phi') + (u_n, \phi) = (-u'_n + u_n, \phi) \rightarrow (w, \phi)
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
(u, -\phi') \qquad (u, \phi)
$$

This proves that $-u' + u = w$ and, therefore, $u \in H^1(0,1)$. Moreover, $u_n \to u$ in $H^1(0,1)$. Continuous embedding of $H^1(0,1)$ into $C([0,1])$ implies that,

$$
u(x) = \lim_{n \to \infty} u_n(x) = 0
$$
 for $x = 0, 1$.

Consequently, $u \in D(A)$.

(c) We have

$$
||Au||2 = ||u'||2 + ||u||2 + 2(u',u).
$$

But

$$
2(u', u) = \int_0^1 \frac{d}{dx}(u^2) = u^2\vert_0^1 = 0.
$$

Consequently,

$$
||Au||^2 = ||u'||^2 + ||u||^2 \ge ||u||^2.
$$

(d) Integration by parts and BC's on u reveal that

$$
D(A^*) = H^1(0,1) \quad A^*v = -v' + v \, .
$$

(e) We get

$$
D(A^*) = \{ce^x : c \in \mathbb{R}\}.
$$

(f) According to the Closed Range Theorem for Closed Operators, the equation has a unique solution u for every $f \in L^2(0,1)$ such that $f \in \mathcal{N}(A^*)^{\perp}$, i.e.,

$$
\int_0^1 f(x)e^x = 0.
$$

5. Variational formulations. Consider the ultraweak variational formulation of the previous problem, i.e.,

$$
\begin{cases}\n u \in L^{2}(0, 1) =: U \\
 \underbrace{\int_{0}^{1} u A^* v \, dx}_{b(u,v)} = \underbrace{\int_{0}^{1} f v \, dx}_{l(v)} \quad \forall v \in D(A^*) = H^{1}(0, 1) =: V,\n\end{cases}
$$

where A^* denotes the L^2 -adjoint of $A, A^*v = -v' + v$, and $f \in L^2(0,1)$. [Hint: For this problem, use results of the previous problem.]

- (a) Define the operator $B: U \to V'$ and its conjugate corresponding to the bilinear form $b(u, v)$.
- (b) State the Babuška-Nečas Theorem for Hilbert spaces.
- (c) Use this theorem to investigate the well-posedness of the variational formulation.

Solution.

(a) If the bilinear form $b(u, v)$ is continuous (trivially in our case), then the operator

$$
B: U \to V', \quad \langle Bu, v \rangle := b(u, v), \quad v \in V, u \in U,
$$

is always well-defined, linear and continuous. The map setting b into B is an isometric isomorphism. The conjugate operator,

$$
B': V'' \sim V \to U', \quad \langle B'v, u \rangle = b(u, v) \quad u \in U, v \in V,
$$

is also well-defined, linear and continuous with the norm equal to that of B.

(b) If the bilinear form satisfies the inf-sup condition,

$$
\sup_{v \in V} \frac{|b(u, v)|}{\|v\|_V} \ge \gamma \|u\|_U \quad \Leftrightarrow \quad \|Bu\|_{V'} \ge \gamma \|u\|_U
$$

and $l \in V'$ vanishes on the null space of the transpose operator,

$$
l(v) = 0 \quad \forall v \in V_0 := \{v \in V : b(w, u) = 0 \quad \forall w \in U\},\
$$

then there exists a unique solution u to the variational problem and

$$
||u||_{U} \leq \gamma^{-1}||l||_{V'}.
$$

(c) We first prove the inf-sup condition. It is sufficient to find a $v \in H^1(0,1)$ such that $A^*v = u$ and

$$
||v|| \leq C||A^*v|| = C||u||.
$$

Once we control the L^2 -norm of v, we control also the L^2 -norm of its derivative,

$$
||v'|| \le ||\underbrace{-v'+v}_{A^*v}|| + ||v|| \le (1+C)||A^*v|| = (1+C)||u||,
$$

and, consequently,

$$
||v||_{H^1(0,1)}^2 = ||v||^2 + ||v'||^2 \le \underbrace{\left((1+C)^2 + C^2 \right)}_{C_1^2} ||u||^2.
$$

We have then

$$
\sup_{v} \frac{|b(u,v)|}{\|v\|_{H^1}} \ge \frac{\|u\|_{L^2}^2}{\|v\|_{L^2}} \ge \frac{1}{C_1} \frac{\|u\|_{L^2}^2}{\|u\|_{L^2}} = \frac{1}{C_1} \|u\|_{L^2}.
$$

Next, we determine the null space of the transpose operator. Clearly,

$$
0 = \int_0^1 u A^* v \quad \forall u \in L^2(0,1) \quad \Rightarrow \quad A^* v = 0.
$$

This gives,

$$
\mathcal{N}(B') = \{ce^x : c \in \mathbb{R}\}.
$$

Consequently, by the Babuška-Nečas Theorem, for every $l \in (H^1(0,1))'$ that satisfies the compatibility condition

$$
l(e^x) = 0,
$$

the variational problem has a unique solution u that depends continuously upon l . Note that the right-hand side may be more general than an L^2 -function. For the L^2 -function f,

$$
l(v) = \int_0^1 fv,
$$

so the function f must be L^2 -orthogonal to e^x .

Finding a solution $v \in H^1(0,1)$, $A^*v = u \in L^2(0,1)$ is an undetermined problem. We may fix v by adding an extra BC: $v(0) = 0$. You can now find v explicitly (this is an elementary problem), or you can consider an auxiliary problem

$$
\begin{cases}\nv \in H^1(0,1),\ v(0) = 0, \\
Lv := -v' + v = u.\n\end{cases}
$$

By the same argument as in the previous problem, operator L is bounded below,

$$
\| -v' + v \|^2 = \|v'\|^2 + v(1)^2 + \|v\|^2 \ge \|v\|^2.
$$

The adjoint,

$$
D(L^*) := \{ u \in H^1(0,1) : u(1) = 0 \}, \qquad L^*u = -u' + u \,,
$$

has a trivial null space. The Closed Range Theorem for Closed Operators implies thus that there exists a unique solution $v \in D(L)$, $Lv = A^*v = u$, and $||v|| \le ||u||$.

6. Nonlinear equations. Let X be a Banach space and $T : X \to X$ a bounded linear operator. Let $g: X \to X$ be a nonlinear mapping that is C^1 and has $g(0) = 0$ and $Dg(0) = 0$. For $f \in X$, we want to solve

$$
F(u) = u + Tg(u) = f
$$

We consider the map $G(u) = u + \alpha (F(u) - f)$ for some $\alpha \in \mathbb{R}$.

- (a) Show that $G(u)$ is a contractive map for small enough u and properly chosen α .
- (b) Use the Banach contraction mapping theorem to show that there is a solution to $F(u)$ = f , provided f is sufficiently small.
- (c) Compute $DF(u)(v)$ from the definition of the Fréchet derivative.
- (d) Solve $F(u) = f$ using the inverse function theorem, provided f is sufficiently small.

Solution.

(a) Let $u, v \in X$ and compute

$$
G(u) - G(v) = u - v + \alpha (F(u) - F(v)) = (1 + \alpha)(u - v) + \alpha T(g(u) - g(v)),
$$

so that

$$
||G(u) - G(v)|| \le |1 + \alpha| ||u - v|| + |\alpha| ||T|| ||g(u) - g(v)||.
$$

Since $Dg(0) = 0$ and g is C^1 , given $\epsilon > 0$, there exists $\delta > 0$ such that for $w \in B_{\delta}(0)$, $||Dg(w)|| \leq \epsilon$. Therefore the mean value theorem shows that

$$
||g(u) - g(v)|| \le \epsilon ||u - v|| \quad \forall u, v \in B_\delta(0).
$$

Take, for example, $\alpha = -\frac{1}{2}$ $\frac{1}{2}$ and $\frac{1}{2}\epsilon \|T\| < \frac{1}{4}$ $\frac{1}{4}$ (which defines δ). Then G is contractive (with constant $\frac{3}{4}$) on $B_{\delta}(0)$.

(b) It remains to show that $G : B_\delta(0) \to B_\delta(0)$. Compute

$$
||G(u)|| \le ||G(u) - G(0)|| + ||G(0)|| \le \frac{3}{4}||u|| + ||\alpha f||.
$$

Requiring $||f|| < \frac{\delta}{\epsilon}$ $4|\alpha|$ completes the proof.

(c) We compute

$$
F(u + v) - F(u) = v + T(g(u + v) - g(u)) = v + T(Dg(u)(v) + R_g(u, v))
$$

= v + T(Dg(u)(v)) + TR_g(u, v),

where $||R_g(u, v)|| = o(||v||)$. But then $||TR_g|| \le ||T|| ||R_g|| = o(||v||)$, so

$$
DF(u)(v) = v + T Dg(u)(v).
$$

(d) We note that F is C^1 and $DF(0) = I$ is invertible. Thus the inverse function theorem gives open sets $U, V \subset X$ such that $0 \in U$ and $F(0) = 0 \in V$ such that F is a diffeomorphism from U to V. Thus we can solve the problem for $f \in V$.

CSEM Area A-CAM Preliminary Exam (CSE 386C–D)

May 28, 2021, about any 3 hours from 9:00 a.m. to 3:00 p.m.

You may use the class textbooks and your own notes on this exam.

Work any 5 of the following 6 problems.

1. Let the field be real and $\mathbb P$ denote the vector space of all polynomials in $x \in \mathbb R$; that is, $\mathbb{P} = \left\{ p(x) = \sum_{k=0}^{n} c_k x^k : n \text{ is a nonnegative integer and } c_k \in \mathbb{R} \right\}.$ Let $\|\cdot\| : \mathbb{P} \to [0, \infty)$ be defined for such p as $||p|| = \max_{0 \le k \le n} |c_k|$.

- (a) Show $\|\cdot\|$ is a norm on \mathbb{P} .
- (b) Show that the NLS $(\mathbb{P}, \|\cdot\|)$ is not complete.
- (c) Let $m \geq 0$ and $T_m : \mathbb{P} \to \mathbb{R}$ be defined by $T_m p = \sum_{k=0}^{\min(m,n)} c_k$, which is clearly linear. Show that each T_m is bounded.
- (d) Since P is not Banach, the Uniform Boundedness Principle need not hold. In fact, show that $\sup_m |T_m p| < \infty$ for each $p \in \mathbb{P}$ but $\sup_m ||T_m|| = \infty$.

2. Let Ω be some set and $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert space of functions $f : \Omega \to \mathbb{F}$ (F is R or C). Suppose that there is a constant $C(x)$ such that

$$
|f(x)| \le C(x) \|f\| \quad \text{for all } f \in H.
$$

- (a) Show that if $f, g \in H$ and $x \in \Omega$, then $|f(x) g(x)| \leq C(x) ||f g||$.
- (b) Show that there exists a function $K : \Omega \times \Omega \to \mathbb{F}$ (called a *reproducing kernel*) such that for each fixed $x \in \Omega$, $K(\cdot, x) \in H$ and

$$
f(x) = \langle f, K(\cdot, x) \rangle \quad \text{for all } f \in H.
$$

[Hint: Use the Riesz representation theorem.]

(c) Show that $K(x, y) = \overline{K(y, x)}$ (i.e., K is conjugate symmetric). Be sure to justify that $K(x, \cdot) \in$ H for each $x \in \Omega$.

3. Let H be a complex Hilbert space and A a bounded linear operator on H. Define $|A| = (A^*A)^{1/2}$.

- (a) Show that $|A|$ is a well defined, bounded linear, self-adjoint operator. [Hint: Use Theorem 4.26.]
- (b) Show that $||A|x|| = ||Ax||$ for all $x \in H$.
- (c) Show that $H = \overline{R(|A|)} \oplus N(|A|)$ and that $N(|A|) = N(A)$.

4. Half Laplacian in \mathbb{R} . Let $\mathbb{R}^2_+ = \{(x, y) \in \mathbb{R}^2 : y > 0\}$. For $u \in H^1(\mathbb{R}^2_+)$, we denote by \bar{u} the Fourier transform in x only, i.e.,

$$
\bar{u}(\xi, y) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} u(x, y) e^{-ix\xi} dx.
$$

Take $f \in H^1(\mathbb{R})$, and consider u the solution to

$$
\begin{cases}\n\partial_x^2 u + \partial_y^2 u = 0, & (x, y) \in \mathbb{R}^2_+, \\
u(x, 0) = f(x), & x \in \mathbb{R}.\n\end{cases}
$$
\n(1)

- (a) Find the equation verified by \bar{u} .
- (b) Show that there exists a unique solution of (1) such that $\nabla u \in L^2(\mathbb{R}^2_+)$, and give a formula for \bar{u} . [Hint: Solutions to the ODE $y'' - \omega^2 y = 0$ are of the form $Ae^{-\omega t} + Be^{\omega t}$.]
- (c) For $f \in H^1(\mathbb{R})$, we define $\Delta^{\alpha} f$, for $0 < \alpha < 1$ a real number, through the Fourier transform as $\widehat{\Delta}^{\alpha} f = |\xi|^{2\alpha} \widehat{f}$. Show that for u solving (1), we have

$$
-\partial_y u(x,0) = \Delta^{1/2} f.
$$

(d) Show that

$$
\int_{\mathbb{R}^2_+} |\nabla u|^2 \, dx \, dy = \int_{\mathbb{R}} f \Delta^{1/2} f \, dx = \int_{\mathbb{R}} |\Delta^{1/4} f|^2 \, dx.
$$

5. Let $\Omega \in \mathbb{R}^d$ be a bounded domain with a Lipschitz boundary, $f \in L^2(\Omega)$, and $\alpha > 0$. Consider the boundary value problem

$$
\begin{cases}\n-\Delta u + u = f & \text{in } \Omega, \\
\frac{\partial u}{\partial \nu} + \alpha u = 0 & \text{on } \partial \Omega.\n\end{cases}
$$

(a) For this problem, formulate a variational principle

$$
B(u, v) = (f, v) \qquad \forall v \in H^{1}(\Omega).
$$

(b) Show that this problem has a unique weak solution.

6. Given $I = [0, b]$, consider the problem of finding $u : I \to \mathbb{R}$ such that

$$
\begin{cases}\n u'(s) = g(s)f(u(s)) & \text{for a.e. } s \in I, \\
 u(0) = \alpha,\n\end{cases}
$$
\n(2)

where $\alpha \in \mathbb{R}$ is a given constant, $g \in L^p(I)$, $p \geq 1$, and $f : \mathbb{R} \to \mathbb{R}$ are given functions. We suppose that f is Lipschitz continuous and satisfies $f(0) = 0$.

(a) Consider the functional

$$
F(u) = \alpha + \int_0^s g(\sigma) f(u(\sigma)) d\sigma.
$$

Show that F maps $C^0(I)$ into $C^0(I) \cap W^{1,p}(I)$. Moreover, show that $u \in C^0(I) \cap W^{1,p}(I)$ is the solution to (2) if and only if it is a fixed point of F .

(b) Show that there exists b small enough, not depending on α , such that F has a unique fixed point in $C^0(I)$.

Area A-CAM May 2021 Solutions

 \mathbb{R} $\mathbb{R} = \{ \varphi = \sum_{k=0}^{n} c_k x^k \}$ $||p|| = max |c_k|$ $\|A\|_{\infty}$ Norm (i) $\|P\| \ge 0$, $\|P\| = 0 \iff C_{k} = 0$ th $\iff \rho = 0$ (iii) $||cpl|| = ||z c c_k x^k|| = m c_k |c c_k|$ $= |c| \max |c_F| | = |c| |f|$ (iii) $\|p+q\| = \max|c_{p}+d_{k}|$ \leq max) $c_{k1} + m_{\infty} |d_{k}| = ||p|| + ||g||$ (b) Let $p_n = 1 + \frac{1}{2}x + \dots + \frac{1}{n}x^n$ Then $\{p_n\}$ is Cauchy: $(m>n)$ $||p_{n}-p_{m}|| = \frac{1}{n+1}$ \longrightarrow 0 But Protop with Brite degree $\lim_{n\to\infty}\rho=\sum_{k=0}^{k=0}c^{k}\frac{1}{(k+1)!}\sum_{k=0}^{k=0}c^{k}\frac{1}{(k+1)!}\frac{1}{(k+1)!}\geq\frac{1}{k+1}>0$ $\begin{pmatrix} 2 \end{pmatrix}$ $|\tau_m p| \leq \sum_{k=0}^{k=0} \sum_{m,n(n,m)} |c_k| \leq \min_{m,n(m,m)} ||p||$ $\leq m$ $\left\| \varphi \right\|$ $\omega >$ $||\varphi|| \wedge \varphi|| \leq \sqrt{4\pi 1} \cdot \lim_{n \to \infty} e^{-\alpha n}$ S_{ν}^{μ} $||T_{\mu}|| \geq S_{\nu}^{\mu}$ $\frac{||\lambda||}{||\lambda||}$ $\qquad \qquad \gamma = 1 + x + x^2 + ... + x^n$ \geq S_{∞}^{∞} $|\pi_{n}F| = \min(n,m) = n \Rightarrow \infty$

Area A-CAM May 2021 Solutions

 $H = \frac{56.52}{7} \rightarrow F^2$ $2.$ $\frac{1}{2} \frac{1}{2} \frac{$ $\frac{f_{\beta}\in H, x \in \Omega \implies}{|f(x)-g(x)| = |(f-g)(x)| \le C(x)}$

Let $T_{\gamma}: H \to F$ be $T_{\gamma}f =$ ั⁄ ∝ิ $\sqrt{2}$ be $T_x f = f(x)$ Tx is a linear fanal (by defin Then + sc. mult. $2n$ of 40 $\frac{f(x,y)}{f(x,y)} = \frac{f(x,y)}{f(x,y)} = \frac{f(x,y)}{f(x,y)}$ $Riesz =$ 三 $V + E$ $f(x)$ (c) $(b_{\gamma}$ (b) $K(-\chi)$ ϵ \overline{H} $K(\lambda x) = \langle K(\cdot, x), K(\cdot, x) \rangle$ = $\langle k(\cdot, \gamma), k(\cdot, \gamma) \rangle$ = $\overline{k(\gamma, \gamma)}$ Note: $k(x_i) = k(x_i) \in H$.

Area A-CAM May 2021 Solutions3. H complex Hilbert, $A \in B(H,H)$. $|A| = (A^*A)^{1/2}$ $T = A^*A \in B(H,H)$ (a) Let $\langle Tx,y\rangle = \langle A^rAx,y\rangle = \langle Ax,Ax\rangle$ $\frac{1}{\Rightarrow} \frac{1}{1-\frac$ $\langle Tx,x\rangle = ||A_{x}||^{2} \ge 0 \implies$ $\overline{1}$ \geq 0 Thm $4.26 \Rightarrow T$ has a unique.
 $\rho o s$ ag. root $(A'A)^{2} \in B(H,H)$
 $S_{M,Q}$ $(A'A)^{2} \ge 0$, it is cut-adjoint $|A|^2$ χ , χ $>$ = \langle Tx , χ $>$ χ = \langle A $^{\prime}$ A x, x > = \langle A x, A x > = ||A x | Let $R = \overline{R(1A1)}$ $\langle \gtrsim$ The $N = R \oplus R^{\perp}$ $xeR^{\perp} \Leftrightarrow \langle x, y \rangle = 0 \quad \forall y \in R(M)$ $\begin{array}{cccc}\n\iff &\langle x,y\rangle=0 & \forall y\in R(H)\\ \n\iff &\langle x,A|z\rangle=0 & \forall z\in H\\ \n\iff &\langle |A|_{x,z}\rangle=0 & \forall z\in H\\ \n\iff &\langle |A|_{x,z}\rangle=0 & \forall z\in H\n\end{array}$ \Leftrightarrow $\chi \in N(H)$ $\frac{}{\sqrt{1-w}}$ R⁺ = N(IAI) and $H = R(M) \oplus N(M)$ But $x \in N(H) \Leftrightarrow ||A|x||=0 \Leftrightarrow ||Ax||=0$ $\Leftrightarrow x \in N(A)$ S_{\odot} N(IAI) = N(A)

Area A-CAM May 2021 Solutions $\begin{cases} 2^{2}u+2^{2}u=0\\ u(x,0)=f(x)\in H^{1}\end{cases}$ (∞) (a) $\frac{3}{2^{x}u} + 3\frac{v}{u} = 0$
 $= -151^{2} \frac{v}{u}$
 \Rightarrow $u(x,y) = f_5^{1} (f(s) e^{-|s|y})$ = $(2\pi)^{1/2} f * f'_{s}(e^{-|s|}\partial)$
 $= (2\pi)^{1/2} f * f'_{s}(e^{-|s|}\partial)$ $= 0_{x} u(x, y) = -(2\pi)^{-1/2} + r (0_{x} f_{5}^{1/2} (e^{-151}x))$ $(2\pi)^{2} (2\pi)^{2} (2\pi)^{2}$ = - $\sqrt{3} \hat{f} (\vec{f}_{3}(e^{-15i\theta}))$ = - $\sqrt{3} \hat{f} e^{-15i\theta}$ $\frac{105}{100}$ + 30^t, we have $\int_{\mathbb{R}^2} |\nabla u|^2 dxdy = (\nabla u_1 \nabla u)_\mathbb{R} = -(\Delta u_3 u)_x + \int_{\mathbb{R}^2} \nabla u \cdot \mathcal{U} u =\int_{\mathbb{R}}\Delta^{\vee_{2}}f$ $= 0 \left(\Delta^{12}f\right)^{2}f = \frac{15}{12} \left(\frac{2}{7}f\right)^{2}f$ $=$ $\sqrt{447^2}x$

Area A-CAM May 2021 Solutions $5, 29992$ $5, 29992$ \sim $-\Delta u, v$ $\sqrt{2}$ ∇ \equiv $[\nabla u,\nabla v]$ $2 d x,$ $+$ $B(y, y) =$ $(\nabla u, \nabla v) + \alpha < u, v > 0$ \mathcal{Y} v \in \mathcal{H}^1 (f, v) $w \in H$ trace en $ubsc$ 20 ew Lax-Milgram. $\sqrt{2}$ CF, V tena α $cont$ $1_{\mathcal{M}}$ gives \subseteq / H' $\xi \in$ $\frac{1}{\alpha \|\alpha\|_{\mathcal{H}} \|\alpha\|}$ $\frac{1}{\beta(\nu,v)}<$ $||\nabla \mathbf{w}$ $||\nabla$ \leq \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} $\overline{\delta}$ Δr WQ a Poincent need \leq $\lfloor \sqrt{\gamma} \rfloor$ $\|\nabla \mathcal{N}\|$ + $|| \cdot \rangle$ $\frac{1}{1+25}$ $S = \rho \rho o s \rho$ $\mu^{\prime\prime}$ \mathcal{A} Men $\geq n$ $|| \nabla x ||$ $\langle u_{\alpha} \sim$ \star \bigcirc L^2 \circ ∇^{α} $u = 0$ 1, contradiction $B +$ $\|\mathbf{v}\|$ =

Area A-CAM May 2021 Solutions6. $I = \begin{matrix} 6 & \sqrt{2} = 206 \end{matrix}$
 $\begin{matrix} 6 & \sqrt{2} = 206 \end{matrix}$
 $x + \int_{0}^{s} f(s) f(w(s)) ds$ $F(\omega) \in C^{\circ} \Rightarrow F(\omega) \in L^{\circ}$ UEC° => $(F(u)) = 8(s) f(u(s)) \in L^{p}$
 E^{∞} since $Lipschitz$ $T +$ $u = d + \int_{0}^{s} g(s) f(u(s)) ds$ $\frac{7\hbar\nu\wedge\int u'=-g(s)\cdot f(u(s))}{\hbar\nu\wedge\int u(s)=d}$ $\|F(\omega)-F(\omega)\|=\left\|\int_{0}^{\infty}\int_{0}^{s}e^{(s)}(f(\omega)-f(\omega))ds\right\|_{,\infty}$ $\frac{||g||_{P(0,b)} + ||f(u+f(v)||_{L(0,b)}}{||g||_{L^{2}(0,b)}}$ \leq $\frac{||\mathbf{u}||}{||\mathbf{u}||}$ θ <1 if b small enough. (θ = 2 F contractive $||F(w)||_{\infty} = ||F(w) - F(o) + \alpha||_{\infty}$ $\leq \theta$ lullpat $\alpha \leq \theta R + \alpha$ \Rightarrow \Rightarrow R = $\frac{\alpha}{1-\beta}$ = 2d $\alpha \leq (\frac{1-\theta}{2})R$ Thus $F: \overline{B_{\rho}(0)} \longrightarrow \overline{B_{\rho}(0)}$ $F: B(0) \longrightarrow B(0)$
and \exists_{i}^{l} fixed of $i \nearrow B_{\rho}(0)$

CSEM Area A-CAM Preliminary Exam (CSE 386C–D)

May 31, 2022, 9:00 a.m. to 12:00 noon

Work on any 5 of the following 6 problems.

1. Let $\Omega \subset \mathbb{R}^d$ be a bounded domain with $\int_{\Omega} dx = 1$. We consider a real base field and $X \in L^2(\Omega)$ as a random variable with mean $\mu(X) = \int_{\Omega} X(x) dx$ and standard deviation $\sigma(X) = ||X - \mu(X)||_{L^2(\Omega)}$. The covariance of $X, Y \in L^2(\Omega)$ is $cov(X, Y) = \langle X - \mu(X), Y - \mu(Y) \rangle_{L^2(\Omega)}$.

- (a) State the domain and range of μ , σ , and cov. Why is $\mu \in (L^2(\Omega))^*$?
- (b) Show that σ is a seminorm on $L^2(\Omega)$. Why is it not a norm?
- (c) Show that $|\text{cov}(X, Y)| \le \sigma(X) \sigma(Y)$.
- (d) We denote the *probability* that $X \ge \alpha$ as $Prob(X \ge \alpha) = \int_{\{x:X(x)\ge\alpha\}} dx$. Show Markov's inequality: $\text{Prob}(X \geq \alpha) \leq \frac{1}{\alpha}$ $\frac{1}{\alpha}\mu(X).$

2. Let H be a separable, infinite dimensional, complex Hilbert space and T a compact, selfadjoint operator on H . The Hilbert-Schmidt and spectral theorems tell us that there is a maximal orthonormal set of eigenvectors u_n with corresponding eigenvalues λ_n , $n = 1, 2, \ldots$ Let $P_n : H \to H$ be projection onto span $\{u_n\}.$

- (a) Show that for all $x \in H$, $P_n x = \langle x, u_n \rangle u_n$, $x = \sum_n P_n x$, and $T = \sum_n \lambda_n P_n$.
- (b) Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying the property that $f(\lambda) \to 0$ as $\lambda \to 0$. Define $f(T): H \to H$ by

$$
f(T) = \sum_{n} f(\lambda_n) P_n.
$$

Show that $f(T)$ is well defined (i.e., the series converges). [Hint: Use Bessel's inequality.]

- (c) Show that if $f(x) = x^2$, then $f(T) = T^2$.
- 3. Let $T: \mathcal{D}((-1,1)^2) \to \mathcal{D}(-1,1)$ be defined by $(T\varphi)(x) = \varphi(x,0)$.
- (a) Show that T is a (sequentially) continuous linear operator.
- (b) Note that the dual operator $T^* : \mathcal{D}'(-1,1) \to \mathcal{D}'((-1,1)^2)$. Determine $T^*(\delta_0)$ and $T^*(\delta'_0)$, where δ_0 is the usual Dirac point distribution at 0 in one space dimension.

4. Let $\Omega \subset \mathbb{R}^2$ be an open, connected, and bounded domain with a smooth boundary containing 0. Let

$$
X = \{ f \in W^{1,3}(\Omega) : f(0) = 0 \}.
$$

- (a) Use the Sobolev Embedding Theorem to conclude that $X \subset C^{0}(\Omega)$ and that $X \neq W^{1,3}(\Omega)$ is a Banach space.
- (b) Prove the Poincaré-like inequality $||f||_{L^{3}(\Omega)} \leq C||\nabla f||_{L^{3}(\Omega)}$, for some constant C independent of $f \in X$.

5. Let $f \in L^2(\mathbb{R}^d)$ and consider the problem

$$
-\Delta u + u = f \quad \text{in } \mathbb{R}^d.
$$

- (a) Find the variational problem associated to the PDE.
- (b) Use the Lax Milgram Theorem to show the existence and uniqueness of a solution in $H^1(\mathbb{R}^d)$ to the variational problem.
- (c) Using the Fourier transform, show that the solution is actually in $H^2(\mathbb{R}^d)$.
- **6.** Given $\alpha \in \mathbb{R}$, consider the problem of finding u such that

$$
\begin{cases} u'(t) = \frac{u(t)}{1 + u^2(t)}, \\ u(0) = \alpha. \end{cases}
$$

- (a) By integrating, rewrite the differential equation in the fixed-point form $u = F(u)$ for an appropriate functional F.
- (b) Show that F maps $C^0([0,T])$ into $C^0([0,T])$ for any $T > 0$.
- (c) Show that the problem has a unique solution $u \in C^0([0,T])$ for sufficiently small but positive T.

Area A-CAM - Solutions **May 2022** 1. $S_{max} = 1, X \in L^{2}(\Omega), \mu(x) = \frac{S_{max}}{S(x)} = 1 | X_{min}|$ (a) $\mu: L^{2}(\Omega) \rightarrow \mathbb{R}$ $\sigma: L^{2}(\Omega) \rightarrow \mathbb{R}$ cov: $L^{2}(\Omega) \rightarrow \mathbb{R}$
 $\mu(\alpha X + Y) = \sum_{\alpha X} (\alpha X + Y) = \alpha \sum_{\alpha X} X + \sum_{\alpha Y} = \alpha \mu(X) + \mu(Y)$ $\frac{||x|| = ||y||_1 \cdot ||y||_1}{||x||_1 \cdot ||y||_1 \cdot ||y||_1} = \frac{||x||_1 \cdot ||y||_1}{||x||_1 \cdot ||y||_1 \cdot ||y$ 13 bounded, so u= (12)* $\frac{1}{|S|}\frac{1$ $\frac{27}{200}$ $\frac{6(x+1) = ||x+1- \mu(x+1)|| = ||x-\mu(x)+1- \mu(y)||}{\leq ||x-\mu(x)|| + ||x-\mu(y)||}$ Note: if X = constant #0, M(X) = X, so $\sigma(x)=0$ but $X\neq0$ $\frac{c\cdot\frac{1}{\cdot\cdot\cdot}(y,y)}{1+2\cdot\cdot\cdot}(y)=\frac{1}{\cdot\cdot\cdot}\frac{1}{\cdot\cdot\cdot}(x+y)}{1+2\cdot\cdot\cdot(1)}=\frac{1}{\cdot\cdot\cdot(1)}\frac{1}{\cdot\cdot\cdot(1)}=\frac{1}{\cdot\cdot\cdot(1)}$ $(d) Prob(X \ge d) = \int_{\{x: X(x) \ge d\}} dx$ $\frac{1}{2} \sum_{x:Y \geq \alpha_3} \frac{1}{x} \frac{$ $sine \times 20$

ŤĬ Area A-CAM - Solutions

May 2022

-

π

$$
\frac{2 \text{ T} \cdot C(R,H) \cdot T = 1}{{(e)} \text{ P}_{n} \cdot H \rightarrow \text{ space } M_{n} \text{ s. } P_{n} = P(\omega), \text{ and } \text{ some } M_{n} \text{ s. } P_{n} = P(\omega)
$$
\n
$$
\frac{1}{P_{n}} \cdot H \rightarrow \text{ space } M_{n} \text{ s. } P_{n} = C M_{n} \text{ s. } R \rightarrow \text{ we have } \frac{1}{P_{n}} \cdot \frac
$$

Area A-CAM - Solutions **May 2022** $3. T:Q((1,1)^{2}) \rightarrow Q(-1,1) T(P(x)) = P(x,y)$ (a) Let P > P in 29 (ti) ?). Then $\|x^{\alpha_1}y^{\alpha_2}y^{\beta_1}y^{\beta_2}(\phi_n-\phi)\|_{\omega}\longrightarrow 0 \qquad \forall \alpha_1\alpha_2\beta_1\beta_2$ (b) For $\mu \in \Delta'(-1,1)$, $\varphi \in \Delta((-1,1)^2)$ Thus
 $(\frac{1}{2}) (\frac{\phi}{2}) = \frac{1}{2} (\frac{1}{2}) = \frac{1$ $M^{o \omega_{out}}$
 $M^{*}S^{\prime}(\psi) = S^{\prime}(T\psi) = S^{\prime}(\psi_{\varphi_{0}})$ $= -\frac{29}{20} (0,0)$

Area A-CAM - Solutions May 2022 4. 52 gan, connected, brotect, = 0, X={W's : f(0)=0}. (a) $W^{1,3}(\Omega) \hookrightarrow C^0(\Omega)$ since $mp \le d$, Le, 3.1 ≥ 2 . (12) Os \Rightarrow Ca) ϵ_1 W as the means IC tub Thus $X \subseteq C^o(\Omega)$ and $T_{\theta} f = f(0)$

Thus $X \subseteq C^o(\Omega)$ and $T_{\theta} f = f(0)$

Support Is also that Islamic Konsulty Will analysis (d) Then $||f_{\wedge}||^{n/2} \leq C \implies f'_{\wedge} \to f \quad \text{in} \quad M_{1,2}.$ Monoover Fri 7 1 m 1 13
Monoover Fri 7 1 m 1 3
Monoover Fri 7 1 m 1 1 3
Monoover Fri 7 1 m 1 1 3
The 7 m 1 1 1 3
Sut 7 fri 7 0 => Fri 7 constant Since $f_1(0)=0$, $f_2 \longrightarrow 0$ This contradicts that Ifrill, 3=1 so $||f||_{3} \leq C ||\nabla f||_{3}$

Area A-CAM - Solutions May 2022 5. $-\Delta u + u = f \in L^2(\mathbb{R}^d)$
(a) Let $v \in \mathcal{A}(\mathbb{R}^d) \subseteq H'(\Omega)$. Then $\overline{(\neg \Delta v, v)} = (\nabla v, \nabla v) \implies$ S Find uEH(R^d) st.
(TU, TU) + (U, U) = (f, U) + V EH (R^d) $\frac{(f,v) = F(v)}{|(f,v)| \leq ||f||_2 ||v||_1}{||f||_2 ||v||_1}$ (b) $\frac{1}{\left| \left(\nabla u_{y} \nabla v \right) + \left(u_{y} \right) \right|} \leq ||\nabla u|| \, ||\nabla v|| + ||u|| \, ||v||$ \leq 2 $\|u\|_{p}\|v\|_{p}$ continuous $\frac{(\nabla u,\nabla u)+(u,u)}{1!}\frac{du}{u}=\frac{||u||_{H^1}^2}{||u||_{H^1}^2}$ coercive (c) $FT: 151^2$ $\frac{1}{1}$ $\frac{1}{$ Now $||u||_{H^2} = \int (1+|s|^2)|\hat{u}(s)|^2 d3$ $=$ $\int |\hat{\varphi}(s)|^2 d5 = \int |f(x)|^2 dx < \infty$ \sum $u \in H^2(\mathbb{R}^d)$

Area A-CAM - Solutions May 2022 6. $u'(t) = \frac{u(t)}{1 + u^2(t)}$ $u(0) = 1$ \sim $u(t) = d + \int_0^t \frac{u(s)}{1 + u^2(s)} ds = F(u)$ (b) $F: C^{\circ} (CO, T3) \longrightarrow C^{\circ} (CO, T3)$ since the internal of a can't (c) We show F to a contraction on $\frac{||F(u)-F(u)||_{\infty}}{||F(u)-F(u)||_{\infty}}=\frac{||\zeta_{\infty}^{+}(\frac{u}{1+v^{2}}-\frac{u}{1+v^{2}})dt||_{\infty}}{||\zeta_{\infty}^{+}(\frac{u}{1+v^{2}})(1+v^{2})}$ 555222221 40422211 Moreover $||F(w)|| = ||F(w) - F(o)|| + |x|| \leq T(2R+1) ||w|| + |x|$ $5 + (2R+1)R + |K|$ Wart $0 = T(2RH) < 1, T(2R+1)R + |k| \leq R$ Take $R = 2|\alpha|+1>0$. Then $|\alpha|+1$
 $T < \frac{1}{4|\alpha|+3}$ and $T < \frac{|\alpha|+1}{(4|\alpha|+3)(2|\alpha|+1)}$ so take the minimum of these 2. $O< T$ doll

CSEM Area A-CAM Preliminary Exam (CSE 386C–D)

May 15, 2023, 9:00 a.m. to 12:00 noon

Work on any 5 of the following 6 problems.

- 1. Let X be a normed linear space and $M \subset X$ a linear subspace.
- (a) State the Hahn-Banach Theorem for normed linear spaces.
- (b) If M is closed and $x_0 \in X \setminus M$, use the Hahn-Banach Theorem to prove that there is some $f \in X^*$ satisfying $f(x_0) \neq 0$ and $f(x) = 0$ for any $x \in M$.
- (c) If M is not necessarily closed, prove that for any $x_0 \in X$, $x_0 \in \overline{M}$ if and only if there is no bounded linear functional f on X satisfying $f(x) = 0$ for any $x \in M$ but $f(x_0) \neq 0$.
- 2. Open Mapping Theorem.
- (a) State the Open Mapping Theorem.
- (b) Suppose that $\|\cdot\|$ and $\|\cdot\|'$ are two norms on a vector space X. Suppose that both $(X, \|\cdot\|)$ and $(X, \|\cdot\|')$ are complete and there is a constant $C > 0$ such that

 $||x|| \leq C ||x||'$ for all $x \in X$.

From the Open Mapping Theorem, show that the two norms are equivalent.

(c) Use (b) to show that when $X = L^{\infty}([0,1])$, $(X, \|\cdot\|_{L^{1}})$ is not complete.

3. Let $\varphi \in C_0^{\infty}(\mathbb{R}^d)$.

(a) For $\epsilon > 0$, let $\varphi_{\epsilon}(\mathbf{x}) = \epsilon^{-d} \varphi(\epsilon^{-1}\mathbf{x})$. Show that for $f \in C^0(\mathbb{R}^d)$,

$$
\lim_{\epsilon \to 0} \int_{\mathbb{R}^d} \varphi_{\epsilon}(\mathbf{x}) f(\mathbf{x}) d\mathbf{x} = Cf(0)
$$

for some constant C. Find the constant C.

(b) Show that for any $u \in \mathcal{D}'(\mathbb{R}^d)$ and any multi-index α , $D^{\alpha}u * \varphi = u * D^{\alpha}\varphi$.

4. Let Ω be a bounded domain with a smooth boundary and let ν be the unit normal vector on its boundary. Consider the solution (u, v) of the differential problem

$$
u + \Delta^2 u + w = f \quad \text{in } \Omega,
$$

$$
-\Delta w - u = g \quad \text{in } \Omega,
$$

$$
u = \nabla u \cdot \nu = 0 \quad \text{on } \partial \Omega,
$$

$$
w = \gamma \quad \text{on } \partial \Omega.
$$

- (a) Provide an appropriate weak form for the problem. In what Sobolev spaces should u , w, f, g, γ , and the test functions lie?
- (b) Prove that there exists a unique solution to the problem.

5. Let $\phi(x) \in C(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ and $K(x) \in L^{1}(\mathbb{R})$. Use the contraction mapping principle to prove that the initial-value problem

$$
\partial_t u = K * u^2, \quad x \in \mathbb{R}, \ t > 0,
$$

$$
u(x, 0) = \phi(x)
$$

has a continuous and bounded solution $u = u(x, t)$, at least up to some time $T < \infty$.

6. For any $a \in \mathbb{R}$ and $b \in \mathbb{R}$, let the Rectified Linear Unit (ReLU) function $R_{a,b} : \mathbb{R} \to \mathbb{R}$ be

$$
R_{a,b}(x) = \max(ax + b, 0).
$$

Define

$$
G = \left\{ \sum_{j=1}^{m} \alpha_j R_{a_j, b_j} : m \in \mathbb{N}, \ \alpha_j, a_j, b_j \in \mathbb{R} \right\}.
$$

Clearly G consists of piecewise linear functions. In fact, $\varphi \in G$, where

$$
\varphi(x) = R_{0,1}(x) - R_{1,0}(x) + R_{1,-1}(x) - R_{-1,0}(x) + R_{-1,-1}(x) = \begin{cases} 0, & |x| \ge 1, \\ 1 - |x| & |x| \le 1. \end{cases}
$$

- (a) Show that G is invariant to scaling $(x \mapsto \alpha x)$ and translation $(x \mapsto x + c)$.
- (b) Show that if $g \in C([0,1])$, then

$$
\int_0^1 R_{a,b}(x) g(x) dx = 0 \quad \forall a, b \in \mathbb{R} \quad \Longrightarrow \quad g = 0.
$$

(c) Let S be the set of functions in G restricted to [0, 1]. Show that S is dense in $L^2(0,1)$. [Hint: use the density of $C([0,1])$ in $L^2(0,1)$ and (b) to show that $S^{\perp} = \{0\}$.]

CSEM Area A-CAM Preliminary Exam (CSE 386C–D)

May 20, 2024, 9:00 a.m. to 12:00 noon

Work on any 5 of the following 6 problems.

- 1. Let X be an NLS and $Y \neq X$ a closed subspace.
- (a) Define what we mean by the distance from $x \in X$ to Y, i.e., dist (x, Y) .
- (b) If θ is given with $0 < \theta < 1$, prove that there is some $x \in X$ such that $||x|| = 1$ and $dist(x, Y) \geq \theta$.
- (c) Must there be a unique point $x \in X$ such that $dist(x, Y) = 1$? Why or why not?

2. The Riesz Representation Theorem states that if H is a Hilbert space and $L \in H^*$, then there is a unique $y \in H$ such that $Lx = \langle x, y \rangle$ for all $x \in H$.

- (a) For a given $L \in H^*$, prove that the associated $y \in H$ is unique.
- (b) For a given $L \in H^*$, $L \neq 0$, prove that the associated $y \in H$ exists. [Hint: Recall that if N is the null space of L, then we expect that $y \in N^{\perp}$. Let $z \in N^{\perp}$ and consider $u = (Lx)z - (Lz)x$.
- (c) Show that $||L||_{H^*} = ||y||_H$.

3. Let H be a separable Hilbert space and T a positive operator on H. Let $\{e_n\}_{n=1}^{\infty}$ be an orthonormal base for H and define the trace of T to be

$$
\operatorname{tr}(T) = \sum_{n=1}^{\infty} \langle Te_n, e_n \rangle
$$

and suppose this number is finite for T.

- (a) Show that if S a positive operator on H such that $0 \le T \le S$, then $tr(T) \le tr(S)$.
- (b) Show the the trace of T is independent of which base is chosen. [Hint: Care must be taken when interchanging infinite sums, unless all the terms are positive. Use the operator $T^{1/2}$ to resolve this issue.]
- (c) If T is also compact, show that $tr(T) = \sum_{n=1}^{\infty} \lambda_n$, where λ_n are the eigenvalues of T.

4. Let $f, g \in L^1(\mathbb{R}^d)$. Recall that a continuous function ϕ on \mathbb{R}^d is said to vanish at infinity if for any $\epsilon > 0$, there is a compact set K_{ϵ} such that $|\phi(x)| < \epsilon$ for $x \notin K_{\epsilon}$. The subspace of all such continuous functions is denoted $C_v(\mathbb{R}^d)$.

- (a) Prove that $C_v(\mathbb{R}^d)$ is a closed linear subspace of $L^{\infty}(\mathbb{R}^d)$.
- (b) Prove that the Fourier transform $\hat{f} \in L^{\infty}(\mathbb{R}^d)$.
- (c) Prove that $f * g \in L^1(\mathbb{R}^d)$ directly (i.e., do not use Young's inequality) and $|| f * g ||_{L^1(\mathbb{R}^d)} \le$ $||f||_{L^1(\mathbb{R}^d)} ||g||_{L^1(\mathbb{R}^d)}.$
- (d) Show that the Fourier transform $\widehat{f * g} = (2\pi)^{d/2} \widehat{f} \widehat{g}$.

5. Let $\Omega = [0, 1]^d$, define

$$
H^1_{\#}(\Omega) = \left\{ v \in H^1_{loc}(\mathbb{R}^d) : v \text{ is periodic of period 1 in each direction and } \int_{\Omega} v \, dx = 0 \right\}.
$$

- (a) Define precisely what it means for $v \in H^1(\mathbb{R}^d)$ to be periodic of period 1 in each direction.
- (b) Define the natural inner product and norm that one should use on this space.
- (c) Show that $H^1_{\#}(\Omega)$ is a Hilbert space.

6. Let $\Omega \in \mathbb{R}^d$ have a smooth boundary, V_n be the set of polynomials of degree up to n, for $n = 1, 2, \ldots$, and $f \in L^2(\Omega)$. Consider the problem: Find $u_n \in V_n$ such that

$$
B(u_n, v_n) = (\nabla u_n, \nabla v_n)_{L^2(\Omega)} + (u_n, v_n)_{L^2(\Omega)} = (f, v_n)_{L^2(\Omega)} \text{ for all } v_n \in V_n.
$$

(a) Show that there exists a unique solution for any n , and that

$$
||u_n||_{H^1(\Omega)} \leq ||f||_{L^2(\Omega)}
$$

- (b) Show that there is $u \in H^1(\Omega)$ such that, for a subsequence, $u_n \rightharpoonup u$ weakly in $H^1(\Omega)$. Find a variational problem satisfied by u . Justify your answer.
- (c) Show that $||u u_n||_{H^1(\Omega)}$ decreases monotonically to 0 as $n \to \infty$.

 $1. \times NLS$, $Y \subsetneq X$ closed. a^{2} dist $(x, y) = \frac{ln f}{e^{x}}$ ll $x - y$ ll (b) $02021.$
Let $z \in X \setminus Y.$
Find $\gamma_0 \in Y$ s.t. $y = 1$ $||z-\gamma_{0}|| \leq \frac{1}{\theta} \text{dist} (z, Y)$ $(\frac{1}{\rho} > 1)$ Let $x = \frac{2-40}{112-40}$ have norm 1 Now $div f(x, Y) = \frac{df}{x} || \frac{2 - y}{x - y_0} - xy||$ $\frac{1}{10}-\frac{1}{100}-\frac{1}{$ $18 - 18 - 18 - 18$ $||z - y_0||$ dist (z, y) $f(z,y)$ dist(z , y) (c)
No. 1 X NLS so not complete.
(2) In l^{og}(R^L) unit ball is a : In l'IR) unit ball is a square so not unique ^f or 5 π R², get points "above" and

2. Riesz. $Lx = \angle x, y$ (a) Suppose $Lx = \langle x, y \rangle = \langle x, z \rangle$ V $x \in A$ Then $\langle x, y, z \rangle = 0$ $\forall x \in \mathbb{N}$
 $\Rightarrow y - z = 0 \Rightarrow y = z$, Thus unique Note: $Lu = (Lx)Lz - (Lz)Lx = 0 \implies u \in N$ Thus 0 = <u,z> = 4xx,z> - 4(12)x,z> $\Rightarrow (Lx)\|\mathbf{r}\|^2 = \langle (Lz)x,z\rangle = \langle x,\overline{Lz}z\rangle$ Let $y = \frac{Lz}{\|z\|^2}$, so $Lx = \langle x, y \rangle$. $\frac{1}{|L|} = \frac{1}{|L|} =$ $But \t\t L \t\t(\frac{3}{||y||}) = \frac{2(y - x)}{||y||} = ||y||$ \leq $\sup_{x \in N} L(\frac{x}{\|x\|}) = ||L||$ Thus $||L||=||\mathbf{v}||.$

May 2024 3. $T20, 11(T) = \sum_{n=1}^{\infty} \langle Te_{n}e_{n}\rangle < \infty$ (a) If OSTSS, then $\langle \tau_{\mathbf{e}_{n},\mathbf{e}_{n}} \rangle \leq \langle s_{\mathbf{e}_{n},\mathbf{e}_{n}} \rangle$ Sum to see $tr(T) \leq tr(s)$. (b) Let {fin}m=1 be another ON base $H_0(T) = \sum_{n=1}^{\infty} \langle Te_n, e_n \rangle = \sum_{n=1}^{\infty} \left|\left|T^{\prime 2}e_n\right|\right|^2$ $=\sum_{n=1}^{\infty}\|\top^{y_{2}}(\sum_{m=1}^{\infty}\langle e_{n},f_{m}\rangle\langle\cdot\cdot\rangle)\|^{2}$ $=\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}|\langle e_{n},f_{n}\rangle|^{2}||T^{\frac{1}{2}}f_{m}||^{2}$ $=\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}|\langle e_{n},f_{m}\rangle|^{2}\|\mathcal{T}^{\frac{1}{2}}f_{m}\|^{2}$ $||f''||_2 = |$ $=\sum_{m=1}^{\infty}\|\mathbf{1}_{s}x^{m}\|_{s}=\mathbf{1}_{s}(\mathbf{1}_{s})$ (c) TZO => T celtrady, now compact =>
I ON base Esp3 and ervolues Enn3 <u>sţ.</u> $F_x = \sum_{n=1}^{\infty} \frac{1}{n} \langle x, e_n \rangle e_n$ $\Rightarrow \overbrace{f_{\mathsf{R}_{n},\mathsf{R}_{n}}}^{\mathsf{R}_{n},\mathsf{R}_{n}} = \frac{1}{n} \overbrace{f_{\mathsf{R}_{n},\mathsf{R}_{n}}}^{\mathsf{R}_{n},\mathsf{R}_{n}} = \overbrace{f_{\mathsf{R}_{n}}}^{\mathsf{R}_{n}}$

4. P_{12} el'(R^{d}), C_{V} = { ϕ cont : $\forall \epsilon$, $[\phi(k)]$ < ϵ for $x \notin k$ } (a) $\phi, \psi \in C_{\gamma}$, $\lambda \in \mathbb{F}$ $(\lambda + 0) \Rightarrow$ $|\phi(x)+\psi(x)|<\epsilon$ for $x \notin k_{\epsilon}^{p} \cup k_{\epsilon}^{p}=k_{\epsilon}$ compact $|\lambda\phi(x)| < \epsilon$ for $x \notin k_{\epsilon/2}^P$ \Rightarrow $4+4$, $\lambda \phi$ vanishes at ∞ , so subspace If $\phi_n \rightarrow \phi$ in L^{∞} , ϕ is continuous
If $\epsilon > 0$ is given, choose $N \ge 0$ st.
 $\|\phi_n - \phi\|_{\infty}$ $\le \epsilon$ $\forall n \ge N$ H_{max} $|\phi(x)|$ \leq $|\phi_{N}(x) - \phi(x)| + |\phi_{N}(x)|$ \leq ϵ + ϵ + ϵ + \leq + ϵ + \leq + ϵ + \leq ∞ to estainer $\phi \in$ $\overline{16}$ $|\hat{\phi}(5)| = \frac{1}{2\pi i}4\sqrt{2}$ $P(x) = i x \cdot 5 dx$ $\leq \frac{1}{(2\pi)^{d/2}} \int |f(x)| dx$ $\leq \frac{1}{(2\pi)^{4/2}}\|f\|_{11} \implies f \in L^{\infty}$ (c) $f*g(x) = \int f(x-y) g(y) dy$ S lergix)] $dx \leq S$ S lf(x-x)] $|g(y)| dy dx$ $=$ $S\$ $|f(x-y)| dx$ $g(y) dy$ $=$ $[40^{11} \frac{d}{d}g_{\mu}g_{\nu}]=1/4$ (d) $f(x) = \frac{1}{(2\pi)^{2}y} \int f(x-y) g(y) dy e^{i(x-y)} dx$ = $\frac{1}{(2\pi)^{d/2}}\int f(x \cdot y) e^{i(x-y)/2} dx$ of $(y)e^{-i y/2} dy$ = $S_{11}f(5)g(y) e^{-i33}dy$ $= (2\pi)^4$ \hat{f} =

 $S.$ $\Omega =$ $[0,1]^d$, $H^1_+(s) =$ { $v \in H^1_{loc}: v \in H^1$, $\int v dx = O$ } (a) For almost every $x \in \Sigma$ and $f(x+\eta) = f(x)$ (b) $\langle f, g \rangle = \int_{\Omega} f(x) g(x) dx + \int \nabla f \cdot \overline{Vg} dx$ $||f||_{\mathcal{L}} = \frac{1}{2} |f|_{\mathcal{L}} dx + \frac{1}{2} |f(f)|_{\mathcal{L}} dx = ||f||_{\mathcal{L}} ||f||_{\mathcal{L}}$ (c) H^1_+ is clearly a v.s. If $\{f_n\}_s \in H_n^1$ is Cauchy, then $\{f_n\}_s$

is Cauchy in $H^1(\Omega)$, so $\mathcal{I} \in H'(\Omega)$

is Cauchy in $H^1(\Omega)$, so $\mathcal{I} \in H'(\Omega)$ Morcover, $D = \frac{1}{2}f(x)dx \longrightarrow \int f(x)dx$ Let $f(k+ \eta) = f(k)$ $\forall \eta \in \mathbb{Z}^d, \gamma \in \Omega$
Then $f \in H^1$ and $\|f_n - f\|_{H^1_{\pm}} \Rightarrow 0.$ Thus $H'_\#$ is complete.

6. Vn polyn. deg.n Find $u_n \in V_n \Rightarrow$ $B(\psi_n,\psi_n) = (\nabla \psi_n, \nabla \psi_n) + (\psi_n, \psi_n) = (f, \psi_n) \quad \forall \psi_n \in V_n$ (a) Lax-Milgram implies If solly, since
the form B (...) is cont. & corruive on H' , $V_n \subseteq H^1$ Moreover, $v_n = u_n \Rightarrow$
 $||u_n||_{H^1}^2 = (f_j u_n) \leq \frac{1}{2} ||f||^2 \leq ||u_n||^2$ \Rightarrow $\|u_{n}\|_{H^{1}} \leq \|f\|$ (6) Banach Alagola => 7 suboy. of $T \rightarrow (S \rightarrow \sqrt{V}) + (W_{13}V_{1}) = (P_{1}V_{1})$ But polyn. dense $i\pi$ H^1 , so $B(x,y) = (x^2, 0^2) + (y^3, 0^2) = (0, 0) + 0$ (c) Now $V_n \geq V_{n-1}$, so Golerkin \perp $\|u-u_n\|_{\mathfrak{U}^1}^2 = \mathcal{B}(u-u_n, u-u_n) = \mathcal{B}(u-u_n, u-u_n)$ $\leq ||u-u_{\lambda}||_{\mathfrak{p}^1}$ $||u-u_{\lambda}||_{\mathfrak{p}^1}$ \Rightarrow $||u - u_n||_{\mathcal{H}^1} \leq ||u - u_{n-1}||_{\mathcal{H}^1}$ Moreover, $V_{\Lambda} \subseteq H^1$ dence \implies $||u - v_{n}|| \rightarrow 0.$