CSEM Area A-CAM Preliminary Exam (CSE 386C-D)

May 31, 2018, 9:00 a.m. - 12:00 noon

Work any 5 of the following 6 problems.

1. The set \mathcal{X} of all sequences $\{x_n\}_{n=1}^{\infty}$ of complex numbers is a vector space. Let 0 $and let <math>X \subset \mathcal{X}$ be the set of all sequences $\{x_n\}_{n=1}^{\infty}$ such that $\sum_{n=1}^{\infty} |x_n|^p < \infty$.

- (a) Show that X is a vector space. [Hint: Show that $|x + y|^p \le 2^{p-1}(|x|^p + |y|^p)$.]
- (b) Show that the map taking $\{x_n\}_{n=1}^{\infty} \in X$ to $\left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p}$ is not a norm on X.

(c) Show that the map $d: X \times X \to \mathbb{R}$ defined by $d(\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty}) = \sum_{n=1}^{\infty} |x_n - y_n|^p$ is a metric on X.

- 2. Open Mapping Theorem.
- (a) State the Open Mapping Theorem.
- (b) Suppose that $\|\cdot\|$ and $\|\cdot\|'$ are two norms on a vector space X. Suppose that both $(X, \|\cdot\|)$ and $(X, \|\cdot\|')$ are complete and there is a constant C > 0 such that

$$||x|| \le C ||x||' \quad \text{for all } x \in X.$$

From the Open Mapping Theorem, show that the two norms are equivalent.

3. Let $\Omega = [a, b]$, $p, q \in (1, \infty)$, and $\frac{1}{p} + \frac{1}{q} = 1$. Let $v \in L^q(\Omega)$. For every $u \in L^p(\Omega)$ define a function Au by setting

$$(Au)(t) = \int_a^t v(s) u(s) ds$$
 for all $t \in \Omega$.

- (a) Show that A maps $L^{p}(\Omega)$ into $L^{p}(\Omega)$ and is continuous.
- (b) Explain why $A: L^p(\Omega) \to L^p(\Omega)$ is compact.

4. Suppose (X, d_X) and (Y, d_Y) are metric spaces, Y is complete, $A \subset X$ is dense, and $T: A \to Y$ is uniformly continuous. Prove that there is a unique extension $\tilde{T}: X \to Y$ which is uniformly continuous.

5. Let $\Omega \subset \mathbb{R}^d$ be a bounded domain, $f \in L^2(\Omega)$, and $\epsilon > 0$. Suppose u_{ϵ} satisfies

$$-\epsilon \Delta u_{\epsilon} + u_{\epsilon} = f \quad \text{in } \Omega,$$
$$u_{\epsilon} = 0 \quad \text{on } \partial \Omega.$$

Show $u_{\epsilon} \to f$ in $L^2(\Omega)$ as $\epsilon \to 0$. [Hint: Bound appropriate norms of u_{ϵ} and $\sqrt{\epsilon}u_{\epsilon}$.]

6. Let $\Omega \subset \mathbb{R}^d$ be a bounded domain with a smooth boundary and outer unit normal ν . Let **b** a constant vector and $f \in L^2(\Omega)$. Consider the fourth order problem

$$u + \Delta^2 u + b \cdot \nabla u = f \quad \text{in } \Omega,$$

$$u = 0 \quad \text{and} \quad \nabla u \cdot \nu = 0 \quad \text{on } \partial \Omega.$$

- (a) State the Lax-Milgram Theorem for a real Hilbert space.
- (b) Develop a suitable variational form for the problem. [Be careful to handle the boundary values and define the Hilbert spaces you use.]
- (c) Give a hypothesis on |b| so that the Lax-Milgram theorem provides a unique solution to your variational problem. [Hint: Gårding's inequality gives a $C_G > 0$ such that $||v||_{H^2}^2 \leq C_G\{||u||^2 + ||\Delta u||^2\}$ for all $v \in H_0^2$.]

CSEM AreaA - CAM Prelim May 2018 Area A-CAM Solutions May 2018 **Solutions** 1. OZPZI EXNZ ZIXNIZO(a) (i) {xn3+ 2yn3 = 2xn+Mn3 $f(\frac{x+a}{x+a}) < \frac{1}{2}(f(a)+f(a))$ $|X+g|^P < \frac{1}{2}(|X|^P + |g|^P)$ $\Rightarrow \sum |x_n + y_n|^p \leq 2^{p-1} (\sum x_n^p + \sum y_n^p)$ <00 (ii) dEx,3 = Edx,3 ZIXX, P = 2PZIX, P <00. (b) Consider the Δ meg. for x = (1,0,0,-) and y = (0,1,0,0,-) $\Rightarrow (\Sigma | (x+y) | P)'P = 2''P > 2$ $\leq (\Sigma | x | P)'P + (\Sigma | y | P)'P = 1+1 = 2$ 21/P>2, so not a norm (c) $d(x,y) = \sum |x_n - y_n|^p$ (i) d(x,g) ≥01, d(x,g)=0 ≤> x,=yn ∀n V. $(ii) d(x,y) = d(y,x) \nu$ $\begin{array}{ccc} (20) & d(x,y) \stackrel{2}{\leq} d(x,z) + d(z,y) \\ (20) & d(x,y) \stackrel{2}{\leq} d(x,z) + d(z,y) \stackrel{2}{\leq} p^{-1} \\ & |x_n - y_n|^p = |(x_n - z_n) + (z_n - y_n)|^p \\ & \leq 2^{p-1} (|x_n - z_n|^p + |z_n - y_n|^p) \\ & \leq 2^{p-1} (|x_n - z_n|^p + |z_n - y_n|^p) \end{array}$ see (a) < 1xn-2n1P+ 12n-2n1P (p-1<0) => ZIXn-yal & ZIXn-2018 + ZIZn-yal P.

н

Area A-CAM May 2018 **Solutions** 2. Open Mapping (a) Let X, Y be Banach If T:X->Y is bounded, linear, surjective Then T is open (maps open sets to open sets). (b) 11.11, 11.11, (X, 11.11) & (X, 11.11) complete. IXII = C IIXI VXEX. Consider 2: (X, 11.11) -> (X, 11.11) identity Note i is bounded, surjective (and linear), New JEX OK3 E WON i oz Given xEX, ZIXI EBEAB $= \sum_{x \in [1, x]} \frac{x}{||x||} \leq \sum_{x \in [1, x]} \frac{||x||}{||x||} \leq$ Thus the norms are equivalent.

Area A-CAM May 2018 Solutions

3. $Q = Ea, b], @p, q \in (1, \infty), p + \frac{1}{g} = 1.$ $V \in L^{3}(\Omega).$ $A: L^{p}(\Omega) \longrightarrow Rens.$ $(Au)(t) = \int_{a}^{t} V(s) u(s) ds \qquad \forall t \in \Omega.$ a) A: -> LPLE S[(Au)(t)] = St St V(2)u(2) de At < So (IIVII, IIVII, P dt < (b-a) IVII & Hullp HANTER S Ch-a) PHULLS Hull, P So A maps into LP and is continuous, Ault) = Ja V(s) X East (s) u(s) da EL8(2,2) No density of C(a) in LF, L8 V: SV, UK SU $A_{j}u = \lim_{K} A_{j}u_{k}$, $A_{j}: C(R) \rightarrow C(R)$ A:: LP-> LP compact by Ascoli-Aracla A:: LP-> LP compact by density. A:-> A is also compact.

Area A-CAM May 2018 **Solutions**

4. X, Y metric, Y complete, A SX dense T: A > Y unif. cont. (on A). HE>O ISENO St. UNAEA, dy (Tx, Ty) < E whenever dx (x, y) < JE Let x eX and xn -> x, xn GA Claim: 3 TRAZ Cauchy, Erxa 3 Cauchy => = N>0 st. d(ra, ra) < Se V n, m>N => d(Tra, Tra) < E V n, m>N. Y complete => Tra == T(x). Claim: Tunit Conto It so, then TX=TX YXEA and I is unique (sinis A dense) Now dITX, TA) < dITX, TX)+d(Tx, Tx)+d(tx)+d(ta) where x -> x 2m = y - X 2m EA If N>O choon 50 $\frac{d_{\chi}(x_{n},y_{n}) < d_{\chi}(x_{n},\chi) + d_{\chi}(x,\chi) + d_{\chi}(y,y_{n})}{< \delta_{\xi}/3 + \delta_{\xi}/3 + \delta_{\xi}/3 + \delta_{\xi}/3}$ For n, m > N and $d_{\chi}(x,\chi) < \delta_{\xi}/3$. 1 dy (FX, FM) < BE. For mm lage.

Area A-CAM May 2018 **Solutions** 5. NGR, FEL, ETO $-\varepsilon \Delta u_{\varepsilon} + u_{\varepsilon} = f, \Omega; u_{\varepsilon} = 0, \partial \Omega$ Equiv. voristional form is. $\varepsilon(\nabla u \nabla v) + (u \nabla) = (F v) \quad \forall v \in H_0^1(\Omega)$ $V = V_c =)$ < 1171 11 4 11 $\varepsilon ||\nabla u_{\varepsilon}||^{2} + ||u_{\varepsilon}||^{2} = (f, u_{\varepsilon})$ < > 1/4/12+ 2/14/12 E 11 Tu 12 + 2 11 4 112 6 2 1412 9 > It is belowed an H ue in 1 22 ue du in 22 Jeue of in Ho = Jeue og in 2 = JEU -> O => g=O But Thus O + (u, v) = (F, v) $\forall v \in H_{0}(s)$ $(u-f,v)=0 \Rightarrow u=f$ 3

Area A-CAM May 2018 Solutions

6. QER, 6, FEL2 $\sum u + \Delta^2 u + b \cdot \nabla u = f, \Omega$ $\sum u = 0, \quad \nabla u \cdot \nu = 0, \quad \partial \Omega$ (a) Let It be a real Hilbert space with doubt subgrove H. Let B: 9×94 ~ R be bilinear s.t. (i) $|B(x,y)| \le M ||x|| ||y|| \quad \forall x,y \in \mathbb{N}. (ant)$ (ii) $B(x,x) \ge x ||x|| \quad \forall x \in H \quad (convine).$ If $x_0 \in \mathcal{H}$, $F \in H^*$, then $\exists | u \in H + \chi_0$ s.t. $B(u_1) = F(v_1) \quad \forall v \in H.$ (c) LHS = B(U, U), which is can't. For coercivity: 111112 + 112112 + (b. Tu, u) $\geq ||u|| + ||\Delta u||^2 - |b|||\nabla u|| ||u||$ $\geq ||u|| + ||\Delta u||^2 - \frac{1}{2}|b|^2 ||\nabla u||^2 - \varepsilon ||u||^2$ $= (1 - \varepsilon) ||u||^2 + ||\Delta u||^2 - \frac{1}{2}|b|^2 ||\nabla u||^2$ Now C(11ult + 11Ault) > 11 Rull => Need $(1-\varepsilon) \stackrel{\vee}{=} |b| < C \implies |b| < \frac{\zeta_{\varepsilon}}{U}$

CSEM Area A-CAM Preliminary Exam (CSE 386C–D)

May 30, 2019, 9:00 a.m. – 12:00 noon

Work any 5 of the following 6 problems.

1. Let X be a Banach space with dual space X^* and duality pairing $\langle \cdot, \cdot \rangle$, and let $A, B : X \to X^*$ be linear maps.

- (a) State the Closed Graph Theorem and what it means for an operator to be closed.
- (b) Assuming $\langle Ax, y \rangle = \langle Ay, x \rangle$ for all $x, y \in X$, show that A is bounded.
- (c) Assuming $\langle Bx, x \rangle \geq 0$ for all $x \in X$, show that B is bounded. [Hint: Suppose B is not continuous at 0, so $x_n \to 0$ but $Bx_n \to y \neq 0$. For $w \in X$ such that $\langle y, w \rangle > 0$, consider $x_n + \epsilon w$.]

2. Let $\Omega = [0, 1]$ and $1 \le p < \infty$ be given and consider the sequence of functions $g_n \in L^p(\Omega)$ defined by $g_n(x) = n^{1/p} e^{-nx}$. Show that as $n \to \infty$:

- (a) $g_n(x)$ converges pointwise to zero for each fixed $x \in (0, 1]$ and for any $p \ge 1$;
- (b) g_n does not converge strongly to zero in $L^p(\Omega)$ for any $p \ge 1$;
- (c) g_n converges weakly to zero in $L^p(\Omega)$ if p > 1, but not if p = 1.

3. Prove the Mazur Separation Lemma, which says that if X is a normed linear space, Y a linear subspace of X, $w \in X$ but $w \notin Y$, and

$$d = \operatorname{dist}(w, Y) = \inf_{y \in Y} ||w - y||_X > 0,$$

then there exists $f \in X^*$ such that $||f||_{X^*} \leq 1$, f(w) = d, and f(z) = 0 for all $z \in Y$. [Hint: Begin by working in $Z = Y + \mathbb{F}w$.]

4. Let $\Omega = (0, 1)^2$ and consider the boundary value problem (BVP)

$$-u_{xx} + u_{xy} - u_{yy} = f \quad \text{in } \Omega, \tag{1}$$

$$-u_x + u_y - u = g \quad \text{on } \Gamma_L = \{(0, y) : y \in (0, 1)\},\tag{2}$$

$$u = 0 \quad \text{on } \Gamma_* = \partial \Omega \setminus \Gamma_L.$$
 (3)

Let $H = \{v \in H^1(\Omega) : v = 0 \text{ on } \Gamma_*\}$, which is a Hilbert space.

- (a) Find the corresponding variational problem for $u \in H$ and test functions $v \in H$. Also give the function spaces containing f and g.
- (b) Show the general Poincaré type inequality: There exists $\gamma > 0$ such that

$$\|\nabla v\|_{L^2(\Omega)}^2 + \int_{\Gamma_L} v^2 \ge \gamma \|v\|_{L^2(\Omega)}^2 \quad \forall v \in H.$$

(c) Show that there is a unique solution to the variational problem.

5. For fixed T > 0, let $g : [0, T] \times \mathbb{R}^d \to \mathbb{R}^d$ be continuous and Lipschitz continuous in the second argument, i.e., there is some L > 0 such that

 $\|g(t,v) - g(t,w)\| \le L \|v - w\| \quad \forall v, w \in \mathbb{R}^d, t \in [0,T],$

where $\|\cdot\|$ is the norm on \mathbb{R}^d . For any $u_0 \in \mathbb{R}^d$, consider the initial value problem (IVP) u'(t) = g(t, u(t)) and $u(0) = u_0$.

- (a) Write this IVP as the fixed point of a functional $G: C^0([0,T]; \mathbb{R}^d) \to C^0([0,T]; \mathbb{R}^d)$.
- (b) Normally, we use the $L^{\infty}([0,T])$ -norm for $C^{0}([0,T]; \mathbb{R}^{d})$. Show that the function $||| \cdot ||| : C^{0}([0,T]; \mathbb{R}^{d}) \to [0,\infty)$, defined by

$$|||v||| = \sup_{0 \le t \le T} \left(e^{-Lt} ||v(t)|| \right),$$

is a norm equivalent to the $L^{\infty}([0,T])$ -norm.

- (c) In terms of this new norm, show that G is a contraction.
- (d) Explain how we conclude that there is a unique solution $u \in C^1([0,\infty); \mathbb{R}^d)$ to the IVP for all time.
- **6.** Consider finding extremals to the problem: Find $u, v \in C_{0,1}^1([0,1])$ minimizing

$$F(u, v, u', v') = \int_0^1 \left((u')^2 + (v')^2 + 2uv \right) dx.$$

- (a) Find the Euler-Lagrange (EL) equations for this problem.
- (b) Reduce the EL equations to a single equation and find its solution. [Hint: The fourth roots of unity are ± 1 and $\pm i$.]
- (c) Find the extremal to the problem, up to solving a 4×4 system of linear equations.

(d) If we add the constraint that
$$\int_0^1 u^2 v' dx = 0$$
, what EL equations do we get?

Area A-CAM May 2019 Solutions 1. X Banach, A,B: X -> X linear. (a) Closed Graph Theorem: Let X and Y be Banach spaces and T:X->Y Incore Then? The continuous (budged) besols si T <>> BET X EX renadu & beads sit then y=Tx. (b) $\langle Ax, y \rangle = \langle Ay, x \rangle \quad \forall x, y \in X$ Suppose $x_n \xrightarrow{X} x_n$, $Ax_n \xrightarrow{X^*} y_n$ Thun $\langle Ax_n, z \rangle = \langle Az, x_n \rangle$ $\forall z \in X$ $\rightarrow \langle Ay, z \rangle = \langle Az, x_n \rangle = \langle Ax_y, z \rangle$ => Ax=y, and A continuous (buded) (c) < BXXX> >0 YXEX ? ETS for x, ->0, Bx, ->ng = 0 Suppose not: y=0 so = wex, (y, w)=0 Consider $0 \leq \langle B(x_n + \varepsilon w), x_n + \varepsilon w \rangle$ \rightarrow $\langle y + \varepsilon B w, \varepsilon w \rangle_{2}$ = E< M, W> + EXBWW> 20 Let E > 0 so last firm negligible. Contradiction, since E can be t or or So y=0 and B cont.

Area A-CAM May 2019 Solutions 2. $D = EO, II, I \leq p < OO, g_n(x) = n'p = nx$ (a) $g_n(x) = \frac{n'p}{e^{nx}} \xrightarrow{\frac{1}{2}Hapital} \frac{p_n''-1}{xe^{nx}} \longrightarrow 0.$ (b) 11gn11p = Sne-npx dx = -penpx) = p(1-e-np) -> p = 0. (c) Let h ELD, p+ = = 1, If p>1, then by density suppose held Then I x, 70 st. h(x) = 0 for x < xx. Now Sont & So on the, so suppose h≥0. Note $\frac{d}{dn} \left(\frac{v_p - nx}{npe} \right) = \frac{v_p - nx}{e} \left(\frac{L}{pn} - x \right) h$ ≤ 0 for n lage enough, and $x \geq \chi_{*}$ (so $\forall x$). This gut is monstane, so MCT => lin Jank = Jungah = D. That is, gn -> O. But for p=1, $(L')^{*} = L^{\infty}$. Consider h=1. Then $\int_{a}^{b} n e^{-nx} = -e^{-nx} \Big|_{a}^{b} = |-e^{nx} - 2| \neq 0$

Area A-CAM May 2019 **Solutions** 3. X NLS, Y In-subsp, WEXIY. d = dist(w,Y) = inf Hw-ryll > 0. Work in Z=Y+IFW ZEZ > J. yEY, REF St. Z= N+ ZW (for otherwise Y= N-n' = (A-Z) w & Y). Let g: Z -> IF g(z) = Zd. (well defined). Now g Inoor and Ig(man) JAL Hgtzwill = Hgtzwill Hgtzwill = Hgtzwill Hgtzwill = Hgtzwill = inf 11-22+2001 < 1. \Rightarrow $\|g\|\leq 1$. Extend (using Hahn-Banach) to X.

Area A-CAM May 2019

Solutions 4. $\Omega = (0,1)^2$ $\int -u_{xx} + u_{xy} - u_{yy} = f, \Omega$ $\Gamma = \int F_{*}$ $H = \{v \in H^1 : v = 0 \text{ on } F_{*}^*\}$ (a) $(u_X, v_X) - \langle u_X, v \rangle_{\Gamma}$ $-(u_{y}, v_{x}) + \langle u_{y}, v \rangle_{\Gamma}$ $+(u_{y},v_{y}) = = -(f_{y})$ > B(u,v)=(ux,vx) - (uy,vx) + (uy,vy) + (u,v) $= (F, v) - \langle g, v \rangle_{T}$ S feh*, ge(H^{1/2}(T))* (6) Suppose not, so $\exists V_n st. ||V_n||_2 = 1$ but $||\nabla V_n||_2 + \int V_n^2 \leq n.$ =) (subsyst) $= V_{\Lambda} \rightarrow 0, \quad S_{\Lambda} \vee_{\Lambda}^{2} \rightarrow 0$ $= V_{\Lambda} \rightarrow 0, \quad S_{\Lambda} \vee_{\Lambda}^{2} \rightarrow 0$ $= V_{\Lambda} + V_{\Lambda} \vee_{\Lambda} + V_{\Lambda} +$ (c) Lax-Milgram, Linear form good by Fg. Continuity: [B(u,v)] ≤ (11 ux11 + 11 ug11) (1×11 + 11 vy11) + 11 ull 11 $\begin{array}{c} \leq \|\|v\|_{H^{1}} \|v\|_{H^{1}} \\ \leq \|\|v\|_{H^{1}} \|v\|_{H^{1}} \\ \leq \||v\|_{H^{1}} \|v\|_{H^{1}} \\ \leq \||v\|_{H^{1}} \|v\|_{H^{1}} \\ \leq \|v\|_{H^{1}} \\ \leq \|v\|_{H^{1}} \|v\|_{H^{1}} \\ \leq \|v\|_{H^{1}} \\ \leq$

Area A-CAM May 2019 Solutions

5. u' = g(t, u(t)) $u(0) = u_0$. (a) $u(t) - u(0) = \int_0^t g(t_0, u(t)) dt$ $\Rightarrow G(u) = u_0 + \int_0^t g(s, u(s)) ds$ (6) || v || = sup. (-Lt ||v(t)||) Note: $|||_{\mathcal{V}}||| \leq ||_{\mathcal{V}}||_{\infty}$, $|||_{\mathcal{V}}||| \geq e^{-LT} ||_{\mathcal{V}}||_{\infty}$. so III.III equiv. to II.II.00 => III.III satisfies the zero property Scaling clearly okay $||| \vee t w ||| = \underbrace{sup}_{t} \left(\underbrace{e^{-Lt}}_{v \vee w ||} \right) \leq \underbrace{sup}_{t} \underbrace{e^{-Lt}}_{v \vee w ||} \left(\frac{1}{v \vee w ||} \right)$ $\leq \underbrace{sup}_{t} \underbrace{e^{-Lt}}_{v \vee w ||} + \underbrace{sup}_{t} \underbrace{e^{-Lt}}_{v \vee w ||}$ = ||v|| + ||v||So III.III is a norm. $\int e^{Lt} \|G(v) - G(w)\| = e^{-Lt} \|\int (g(sv) - g(sw))\|$ $\leq Le^{-Lt} \int t \|v - w\| = Le^{-Lt} \int t e^{-s} e^{-s} e^{-s} \|v - w\|$ $\leq Le^{-Lt} \int t e^{Ls} \|v - w\|$ $= e^{-Lt} \int e^{-Lt} \|v - w\|$ $= e^{-Lt} e^{-Lt} \int t e^{-Lt} \|v - w\|$ \Rightarrow III G (v) - G(w) III $\leq \Theta ||| v - w |||, \Theta = |-e^{-Lt} < |.$ Banach contraction mapping Thm => =! U C C²([0,T]) s.t. G(w)=U (Ne., IVP). But it u C C², then G(w) G C¹ 4) => NE CI Frally, let T -> 00.

Area A-CAM May 2019 6. $yv \in C_{0,1}([0,1]), F(y,y,y'v') = \int [(u')^2 + (v)^2 + 2uv] dx$ Solutions (a) $f_{M_{1}} = (f_{M_{1}}), i = 1, 2$ (b) u = v'' = u''' $= u = e^{rt}, r^{4} = 1 (r = \pm 1, \pm i)$ $u(x) = Ae^{x} + Be^{-x} + Ce^{ix} + De^{-ix}$ (c) v(x) = u''= Aex + BEX - Ceix - DEix u(o) = A + B + C + D = 0u(1) = A + B = + C = + D = - = 1v(o) = A + B - C - D = 0v(i) = Ae + Be' - Ce' - De' = 1(d) $H = \int_{0}^{1} \left[(u')^{2} + (v')^{2} + 2uv + \lambda u^{2}v' \right] dx$

CSEM Area A-CAM Preliminary Exam (CSE 386C–D)

August 7, 2020, about any 3 hours from 9:00 a.m. - 3:00 p.m.

You may use the class textbooks and your own notes on this exam.

Work any 5 of the following 6 problems.

- 1. A problem on continuous operators.
- (a) Define the topological dual of a Banach space.
- (b) Define the weak topology on a Banach space.
- (c) Let X, Y be Banach spaces and $A : X \to Y$ be a linear operator. Prove that A is continuous if an only if it is weakly continuous (i.e., it is continuous when X and Y are equipped with their weak topologies).

Solution.

(a) The topological dual X' of a normed space X consists of all linear and continuous functionals defined on X. For a complex space X, we may define the topological dual as the space of all *anti*-linear and continuous functionals on X. Either space is equipped with the norm

$$l \in X'$$
, $||l||_{X'} := \sup_{x \in X, x \neq 0} \frac{|l(x)|}{||x||_X} = \sup_{||x||_X \leq 1} |l(x)| = \sup_{||x||_X = 1} |l(x)|$.

For a reflexive Banach space, the supremum is actually attained and can be replaced with maximum. The dual space is always complete, no matter whether X is complete or not.

(b) The weak topology on a Banach space X is a locally convex topology defined by a family of seminorms

$$X \ni x \mapsto |\langle x', x \rangle| = |x'(x)|, \quad x' \in X'.$$

Due to the definitness of the duality pairing (proved using Hahn-Banach Theorem), the family of seminorms satisfies the axiom of separation which implies that the weak topology is well-defined.

(c) We first prove that weak continuity of A implies strong continuity of A. Assume, to the contrary, that there exists a sequence x_n such that $||x_n||_X \to 0$ but $||Ax_n||_Y \not\to 0$. At the cost of replacing x_n with a subsequence, we can assume that there exists $\epsilon > 0$ such that $||Ax_n||_Y \ge \epsilon$. Define,

$$\bar{x}_n = \frac{x_n}{\|x_n\|_X^{1/2}}$$

Then,

$$\|\bar{x}_n\|_X = \|x_n\|_X^{1/2} \to 0 \text{ and } \|A\bar{x}_n\|_Y \to \infty.$$

As the strong convergence implies weak convergence, $\bar{x}_n \rightarrow 0$ and, by weak continuity of A, $A\bar{x}_n \rightarrow 0$ in Y. But every weakly convergent sequence must be bounded, a contradiction.

Assume now that A is strongly continuous.

Lemma: Let X be an arbitrary topological vector space, and Y be a normed space. Let $A \in \mathcal{L}(X, Y)$. The following conditions are equivalent to each other.

(i) $A : X \to Y$ (with weak topology) is continuous.

(ii) $f \circ A : X \to \mathbb{R}(\mathbb{C})$ is continuous $\forall f \in Y'$.

(i) \Rightarrow (ii). Any linear functional $f \in Y'$ is also continuous on Y with weak topology. Composition of two continuous functions is continuous.

(ii) \Rightarrow (i). Take an arbitrary $B(I_0, \epsilon)$, where I_0 is a finite subset of Y'. By (ii),

 $\forall g \in I_0 \exists B_g$, a neighborhood of **0** in $X : x \in B_g \Rightarrow |g(A(x))| < \epsilon$.

It follows from the definition of filter of neighborhoods that

$$B = \bigcap_{g \in I_0} B_g$$

is also a neighborhood of **0**. Consequently,

 $x \in B \Rightarrow |g(A(x))| < \epsilon \Rightarrow Ax \in B(I_0, \epsilon).$

To conclude the final result, it is sufficient now to show that, for any $g \in Y'$,

 $g \circ T : X$ (with weak topology) $\rightarrow \mathbb{R}$

is continuous. But $g \circ T$, as a composition of continuous functions, is a strongly continuous linear functional and, consequently, it is continuous in the weak topology as well (compare the discussion in the book).

2. Projections on a Hilbert space. Let X and Y be Hilbert spaces, $P : X \to Y$ and $Q: Y \to X$ be bounded linear operators, and suppose that $QP: X \to X$ is an orthogonal projection operator. Let $U_1 = R(QP)$ and $U_2 = N(QP)$, i.e., the image (or range) and null space (or kernel) of the operator, respectively. Moreover, let $V_1 = R(P)$.

- (a) What does it mean to say $X = U_1 \oplus U_2$? Show that U_1 and U_2 are orthogonal to each other.
- (b) Prove that U_1 and V_1 are isomorphic.
- (c) Show directly that $P^*Q^*: X \to X$ is an orthogonal projection.
- (d) If $N(Q) \cap R(PQ) = \{0\}$, show that $PQ : Y \to Y$ is a projection operator (not necessarily orthogonal).

Solution.

(a) The symbols $X = U_1 \oplus U_2$ mean that $X = \{u_1 + u_2 : u_i \in U_i, i = 1, 2\}$ and $U_1 \cap U_2 = \{0\}$. For $u_i \in U_i$, we know that $u_1 = QPu_1$ and $QPu_2 = 0$, so

$$\langle u_1, u_2 \rangle_X = \langle QPu_1, u_2 - QPu_2 \rangle_X = 0$$

by the definition of orthogonal projection.

- (b) Consider the map $T = P|_{U_1} : U_1 \to V_1$, that is bounded and linear. Every $v \in V_1$ has some $u \in X$ such that Pu = v. However, there are (unique) $u_i \in U_i$ such that $u = u_1 + u_2$, and so $Tu_1 = Pu_1 = Pu = v$ shows that T maps onto V_1 . To finish, we need to show that T maps one-to-one, i.e., that $Tu_1 = 0$ implies that $u_1 = 0$. But $0 = Tu_1 = Pu_1$, so also $QPu_1 = 0$. Thus $u_1 \in U_1 \cap U_2$, and so $u_1 = 0$.
- (c) For $u, w \in X$, we compute

$$0 = \langle QPu - u, w \rangle_X = \langle u, P^*Q^*w - w \rangle_X,$$

which shows that P^*Q^* is also an orthogonal projection operator.

(d) For $y \in Y$, we know that QPQPQy = QPQy, since QP is a projection. But then

$$0 = QPQPQy - QPQy = Q(PQPQy - PQy) = QP(QPQy - Qy).$$

Thus $PQPQy - PQy \in N(Q)$ and clearly $PQPQy - PQy \in R(PQ)$, so $PQPQy = PQy$.

3. Hilbert basis. Let H be a separable Hilbert space and let $\{e_n\}_{n=1}^{\infty}$ be a maximal orthonormal set (i.e., a Hilbert basis). Let $\{\lambda_n\}_{n=1}^{\infty}$ be a bounded sequence of real numbers, and define the linear operator $A: H \to H$ by

$$Ax = \sum_{n=1}^{\infty} \lambda_n \langle x, e_n \rangle e_n \,.$$

- (a) Show that A is continuous and self-adjoint.
- (b) Show that each λ_n is an eigenvalue with eigenvector e_n .
- (c) Show that if $\lambda_n \to 0$, then A is compact. [Hint: Consider the operator A_N defined by a truncated sum, and show that A_N converges to A.]

Solution.

(a) If
$$x_m \to 0$$
, then $||x_m||^2 = \sum_{n=1}^{\infty} |\langle x_m, e_n \rangle|^2 \to 0$. Thus
 $||Ax_m|| = \sum_{n=1}^{\infty} |\lambda_n|^2 |\langle x, e_n \rangle|^2 \le \max_n |\lambda_n|^2 \sum_{n=1}^{\infty} |\langle x_m, e_n \rangle|^2 \to 0$.

That is, A is continuous at 0, and so continuous everywhere. Now

$$\langle Ax, y \rangle = \sum_{n=1}^{\infty} \lambda_n \langle x, e_n \rangle \overline{\langle y, e_n \rangle} = \sum_{n=1}^{\infty} \langle x, e_n \rangle \overline{\lambda_n \langle y, e_n \rangle} = \langle x, Ay \rangle$$

is clearly self adjoint (since λ_n is real).

Area A-CAM Aug 2020 w/ solutions

(b) Compute

$$(A - \lambda I)x = \sum_{n=1}^{\infty} \lambda_n \langle x, e_n \rangle e_n - \lambda \sum_{n=1}^{\infty} \langle x, e_n \rangle e_n = \sum_{n=1}^{\infty} (\lambda_n - \lambda) \langle x, e_n \rangle e_n,$$

and note that this cannot be invertible when $\lambda = \lambda_n$ for some *n*. Moreover, $Ae_n = \lambda_n e_n$ is clear by orthonormality of the basis.

(c) Consider the operators

$$A_N x = \sum_{n=1}^N \lambda_n \langle x, e_n \rangle e_n$$

Each has finite dimensional range, and is hence compact. Moreover,

$$\|A_N x - A x\|^2 = \left\|\sum_{n=N+1}^{\infty} \lambda_n \langle x, e_n \rangle e_n\right\|^2 = \sum_{n=N+1}^{\infty} |\lambda_n|^2 |\langle x, e_n \rangle|^2 \to 0,$$

so $A_n \to A$ and A is compact.

4. Closed operators. All spaces are real. Consider the operator

$$A : D(A) \to L^2(0,1), \quad Au = u' + u,$$

$$D(A) := \{ u \in L^2(0,1) : Au \in L^2(0,1), \ u(0) = 0, \ u(1) = 0 \},$$

where the derivative is understood in the sense of distributions.

- (a) Interpret D(A) in terms of Sobolev spaces.
- (b) Show that A is a closed operator.
- (c) Prove that A is bounded below in $L^2(0, 1)$.
- (d) Compute the L^2 -adjoint A^* , $L^2(0,1) \supset D(A^*) \ni v \mapsto A^*v \in L^2(0,1)$.
- (e) Compute the null space of the adjoint operator A^* .
- (f) For an appropriate right-hand side f, discuss the well-posedness of the problem:

$$\begin{cases} u \in D(A), \\ Au = f. \end{cases}$$

Solution.

(a) We have

$$u, u' + u \in L^2(0, 1) \quad \Leftrightarrow \quad u, u' \in L^2(0, 1) \quad \Leftrightarrow \quad u \in H^1(0, 1).$$

Consequently, $D(A) = H_0^1(0, 1)$.

(b) We need to show that

$$D(A) \ni u_n \to u, \quad Au_n \to w \quad \Rightarrow \quad u \in D(A), \, Au = w \, .$$

All convergence is in the L^2 -sense. Let $\phi \in \mathcal{D}(0,1)$. We have

$$(u_n, -\phi') + (u_n, \phi) = (-u'_n + u_n, \phi) \to (w, \phi)$$

$$\downarrow \qquad \downarrow$$

$$(u, -\phi') \qquad (u, \phi)$$

This proves that -u' + u = w and, therefore, $u \in H^1(0,1)$. Moreover, $u_n \to u$ in $H^1(0,1)$. Continuous embedding of $H^1(0,1)$ into C([0,1]) implies that,

$$u(x) = \lim_{n \to \infty} u_n(x) = 0$$
 for $x = 0, 1$.

Consequently, $u \in D(A)$.

(c) We have

$$||Au||^2 = ||u'||^2 + ||u||^2 + 2(u', u)$$

But

$$2(u', u) = \int_0^1 \frac{d}{dx}(u^2) = u^2|_0^1 = 0.$$

Consequently,

$$||Au||^{2} = ||u'||^{2} + ||u||^{2} \ge ||u||^{2}.$$

(d) Integration by parts and BC's on u reveal that

$$D(A^*) = H^1(0, 1)$$
 $A^*v = -v' + v$.

(e) We get

$$D(A^*) = \{ ce^x : c \in \mathbb{R} \}.$$

(f) According to the Closed Range Theorem for Closed Operators, the equation has a unique solution u for every $f \in L^2(0,1)$ such that $f \in \mathcal{N}(A^*)^{\perp}$, i.e.,

$$\int_0^1 f(x)e^x = 0.$$

5. Variational formulations. Consider the *ultraweak* variational formulation of the previous problem, i.e.,

$$\begin{cases} u \in L^2(0,1) =: U \\ \underbrace{\int_0^1 u A^* v \, dx}_{b(u,v)} = \underbrace{\int_0^1 f v \, dx}_{l(v)} \quad \forall v \in D(A^*) = H^1(0,1) =: V \,, \end{cases}$$

where A^* denotes the L^2 -adjoint of A, $A^*v = -v' + v$, and $f \in L^2(0, 1)$. [Hint: For this problem, use results of the previous problem.]

- (a) Define the operator $B: U \to V'$ and its conjugate corresponding to the bilinear form b(u, v).
- (b) State the Babuška-Nečas Theorem for Hilbert spaces.
- (c) Use this theorem to investigate the well-posedness of the variational formulation.

Solution.

(a) If the bilinear form b(u, v) is continuous (trivially in our case), then the operator

$$B: U \to V', \quad \langle Bu, v \rangle := b(u, v), \quad v \in V, \, u \in U,$$

is always well-defined, linear and continuous. The map setting b into B is an isometric isomorphism. The conjugate operator,

$$B': V'' \sim V \to U', \quad \langle B'v, u \rangle = b(u, v) \quad u \in U, v \in V$$

is also well-defined, linear and continuous with the norm equal to that of B.

(b) If the bilinear form satisfies the inf-sup condition,

$$\sup_{v \in V} \frac{|b(u, v)|}{\|v\|_V} \ge \gamma \|u\|_U \quad \Leftrightarrow \quad \|Bu\|_{V'} \ge \gamma \|u\|_U$$

and $l \in V'$ vanishes on the null space of the transpose operator,

$$l(v) = 0 \quad \forall v \in V_0 := \{ v \in V : b(w, u) = 0 \quad \forall w \in U \},\$$

then there exists a unique solution u to the variational problem and

$$||u||_U \le \gamma^{-1} ||l||_{V'}.$$

(c) We first prove the inf-sup condition. It is sufficient to find a $v \in H^1(0,1)$ such that $A^*v = u$ and

$$||v|| \le C ||A^*v|| = C ||u||.$$

Once we control the L^2 -norm of v, we control also the L^2 -norm of its derivative,

$$\|v'\| \le \|\underbrace{-v'+v}_{A^*v}\| + \|v\| \le (1+C)\|A^*v\| = (1+C)\|u\|$$

and, consequently,

$$\|v\|_{H^1(0,1)}^2 = \|v\|^2 + \|v'\|^2 \le \underbrace{\left((1+C)^2 + C^2\right)}_{C_1^2} \|u\|^2.$$

We have then

$$\sup_{v} \frac{|b(u,v)|}{\|v\|_{H^{1}}} \ge \frac{\|u\|_{L^{2}}^{2}}{\|v\|_{L^{2}}} \ge \frac{1}{C_{1}} \frac{\|u\|_{L^{2}}^{2}}{\|u\|_{L^{2}}} = \frac{1}{C_{1}} \|u\|_{L^{2}}.$$

Next, we determine the null space of the transpose operator. Clearly,

$$0 = \int_0^1 u A^* v \quad \forall u \in L^2(0,1) \quad \Rightarrow \quad A^* v = 0.$$

This gives,

$$\mathcal{N}(B') = \{ ce^x : c \in \mathbb{R} \}.$$

Consequently, by the Babuška-Nečas Theorem, for every $l \in (H^1(0,1))'$ that satisfies the compatibility condition

 $l(e^x) = 0\,,$

the variational problem has a unique solution u that depends continuously upon l. Note that the right-hand side may be more general than an L^2 -function. For the L^2 -function f,

$$l(v) = \int_0^1 f v \, ,$$

so the function f must be L^2 -orthogonal to e^x .

Finding a solution $v \in H^1(0,1)$, $A^*v = u \in L^2(0,1)$ is an undetermined problem. We may fix v by adding an extra BC: v(0) = 0. You can now find v explicitly (this is an elementary problem), or you can consider an auxiliary problem

$$\left\{ \begin{array}{l} v \in H^1(0,1), \, v(0) = 0 \, , \\ Lv := -v' + v = u \, . \end{array} \right.$$

By the same argument as in the previous problem, operator L is bounded below,

$$||-v'+v||^2 = ||v'||^2 + v(1)^2 + ||v||^2 \ge ||v||^2.$$

The adjoint,

$$D(L^*) := \{ u \in H^1(0,1) : u(1) = 0 \}, \qquad L^* u = -u' + u \,,$$

has a trivial null space. The Closed Range Theorem for Closed Operators implies thus that there exists a unique solution $v \in D(L)$, $Lv = A^*v = u$, and $||v|| \leq ||u||$.

6. Nonlinear equations. Let X be a Banach space and $T: X \to X$ a bounded linear operator. Let $g: X \to X$ be a nonlinear mapping that is C^1 and has g(0) = 0 and Dg(0) = 0. For $f \in X$, we want to solve

$$F(u) = u + Tg(u) = f$$

We consider the map $G(u) = u + \alpha(F(u) - f)$ for some $\alpha \in \mathbb{R}$.

- (a) Show that G(u) is a contractive map for small enough u and properly chosen α .
- (b) Use the Banach contraction mapping theorem to show that there is a solution to F(u) = f, provided f is sufficiently small.
- (c) Compute DF(u)(v) from the definition of the Fréchet derivative.
- (d) Solve F(u) = f using the inverse function theorem, provided f is sufficiently small.

Solution.

(a) Let $u, v \in X$ and compute

$$G(u) - G(v) = u - v + \alpha(F(u) - F(v)) = (1 + \alpha)(u - v) + \alpha T(g(u) - g(v)),$$

so that

$$||G(u) - G(v)|| \le |1 + \alpha| ||u - v|| + |\alpha| ||T|| ||g(u) - g(v)||.$$

Since Dg(0) = 0 and g is C^1 , given $\epsilon > 0$, there exists $\delta > 0$ such that for $w \in B_{\delta}(0)$, $\|Dg(w)\| \leq \epsilon$. Therefore the mean value theorem shows that

$$\|g(u) - g(v)\| \le \epsilon \|u - v\| \quad \forall u, v \in B_{\delta}(0).$$

Take, for example, $\alpha = -\frac{1}{2}$ and $\frac{1}{2}\epsilon ||T|| < \frac{1}{4}$ (which defines δ). Then G is contractive (with constant $\frac{3}{4}$) on $B_{\delta}(0)$.

(b) It remains to show that $G: B_{\delta}(0) \to B_{\delta}(0)$. Compute

$$||G(u)|| \le ||G(u) - G(0)|| + ||G(0)|| \le \frac{3}{4} ||u|| + ||\alpha f||.$$

Requiring $||f|| < \frac{\delta}{4|\alpha|}$ completes the proof.

(c) We compute

$$F(u+v) - F(u) = v + T(g(u+v) - g(u)) = v + T(Dg(u)(v) + R_g(u,v))$$

= $v + T(Dg(u)(v)) + TR_g(u,v)$,

where $||R_g(u, v)|| = o(||v||)$. But then $||TR_g|| \le ||T|| ||R_g|| = o(||v||)$, so

$$DF(u)(v) = v + TDg(u)(v).$$

(d) We note that F is C^1 and DF(0) = I is invertible. Thus the inverse function theorem gives open sets $U, V \subset X$ such that $0 \in U$ and $F(0) = 0 \in V$ such that F is a diffeomorphism from U to V. Thus we can solve the problem for $f \in V$.

CSEM Area A-CAM Preliminary Exam (CSE 386C–D)

May 28, 2021, about any 3 hours from 9:00 a.m. to 3:00 p.m.

You may use the class textbooks and your own notes on this exam.

Work any 5 of the following 6 problems.

1. Let the field be real and \mathbb{P} denote the vector space of all polynomials in $x \in \mathbb{R}$; that is, $\mathbb{P} = \left\{ p(x) = \sum_{k=0}^{n} c_k x^k : n \text{ is a nonnegative integer and } c_k \in \mathbb{R} \right\}$. Let $\|\cdot\| : \mathbb{P} \to [0, \infty)$ be defined for such p as $\|p\| = \max_{0 \le k \le n} |c_k|$.

- (a) Show $\|\cdot\|$ is a norm on \mathbb{P} .
- (b) Show that the NLS $(\mathbb{P}, \|\cdot\|)$ is not complete.
- (c) Let $m \ge 0$ and $T_m : \mathbb{P} \to \mathbb{R}$ be defined by $T_m p = \sum_{k=0}^{\min(m,n)} c_k$, which is clearly linear. Show that each T_m is bounded.
- (d) Since \mathbb{P} is not Banach, the Uniform Boundedness Principle need not hold. In fact, show that $\sup_m |T_m p| < \infty$ for each $p \in \mathbb{P}$ but $\sup_m ||T_m|| = \infty$.

2. Let Ω be some set and $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert space of functions $f : \Omega \to \mathbb{F}$ (\mathbb{F} is \mathbb{R} or \mathbb{C}). Suppose that there is a constant C(x) such that

$$|f(x)| \le C(x) ||f|| \quad \text{for all } f \in H.$$

- (a) Show that if $f, g \in H$ and $x \in \Omega$, then $|f(x) g(x)| \le C(x) ||f g||$.
- (b) Show that there exists a function $K : \Omega \times \Omega \to \mathbb{F}$ (called a *reproducing kernel*) such that for each fixed $x \in \Omega$, $K(\cdot, x) \in H$ and

$$f(x) = \langle f, K(\cdot, x) \rangle$$
 for all $f \in H$.

[Hint: Use the Riesz representation theorem.]

(c) Show that $K(x, y) = \overline{K(y, x)}$ (i.e., K is conjugate symmetric). Be sure to justify that $K(x, \cdot) \in H$ for each $x \in \Omega$.

3. Let H be a complex Hilbert space and A a bounded linear operator on H. Define $|A| = (A^*A)^{1/2}$.

- (a) Show that |A| is a well defined, bounded linear, self-adjoint operator. [Hint: Use Theorem 4.26.]
- (b) Show that ||A|x|| = ||Ax|| for all $x \in H$.
- (c) Show that $H = \overline{R(|A|)} \oplus N(|A|)$ and that N(|A|) = N(A).

4. Half Laplacian in \mathbb{R} . Let $\mathbb{R}^2_+ = \{(x, y) \in \mathbb{R}^2 : y > 0\}$. For $u \in H^1(\mathbb{R}^2_+)$, we denote by \bar{u} the Fourier transform in x only, i.e.,

$$\bar{u}(\xi, y) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} u(x, y) e^{-ix\xi} \, dx.$$

Take $f \in H^1(\mathbb{R})$, and consider u the solution to

$$\begin{cases} \partial_x^2 u + \partial_y^2 u = 0, \quad (x, y) \in \mathbb{R}^2_+, \\ u(x, 0) = f(x), \quad x \in \mathbb{R}. \end{cases}$$
(1)

- (a) Find the equation verified by \bar{u} .
- (b) Show that there exists a unique solution of (1) such that $\nabla u \in L^2(\mathbb{R}^2_+)$, and give a formula for \bar{u} . [Hint: Solutions to the ODE $y'' \omega^2 y = 0$ are of the form $Ae^{-\omega t} + Be^{\omega t}$.]
- (c) For $f \in H^1(\mathbb{R})$, we define $\Delta^{\alpha} f$, for $0 < \alpha < 1$ a real number, through the Fourier transform as $\widehat{\Delta^{\alpha} f} = |\xi|^{2\alpha} \widehat{f}$. Show that for u solving (1), we have

$$-\partial_y u(x,0) = \Delta^{1/2} f$$

(d) Show that

$$\int_{\mathbb{R}^2_+} |\nabla u|^2 \, dx \, dy = \int_{\mathbb{R}} f \Delta^{1/2} f \, dx = \int_{\mathbb{R}} |\Delta^{1/4} f|^2 \, dx$$

5. Let $\Omega \in \mathbb{R}^d$ be a bounded domain with a Lipschitz boundary, $f \in L^2(\Omega)$, and $\alpha > 0$. Consider the boundary value problem

$$\begin{cases} -\Delta u + u = f & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} + \alpha u = 0 & \text{on } \partial \Omega \end{cases}$$

(a) For this problem, formulate a variational principle

$$B(u,v) = (f,v) \qquad \forall v \in H^1(\Omega).$$

(b) Show that this problem has a unique weak solution.

6. Given I = [0, b], consider the problem of finding $u: I \to \mathbb{R}$ such that

$$\begin{cases} u'(s) = g(s)f(u(s)) & \text{for a.e. } s \in I, \\ u(0) = \alpha, \end{cases}$$
(2)

where $\alpha \in \mathbb{R}$ is a given constant, $g \in L^p(I)$, $p \ge 1$, and $f : \mathbb{R} \to \mathbb{R}$ are given functions. We suppose that f is Lipschitz continuous and satisfies f(0) = 0.

(a) Consider the functional

$$F(u) = \alpha + \int_0^s g(\sigma) f(u(\sigma)) \, d\sigma$$

Show that F maps $C^0(I)$ into $C^0(I) \cap W^{1,p}(I)$. Moreover, show that $u \in C^0(I) \cap W^{1,p}(I)$ is the solution to (2) if and only if it is a fixed point of F.

(b) Show that there exists b small enough, not depending on α , such that F has a unique fixed point in $C^0(I)$.

Area A-CAM May 2021 Solutions

1. P= 2p= ZCKx 2 $||\mathbf{p}|| = \max |\mathbf{c}_{\mathbf{F}}|$ (a) Norm (i) $||p|| \ge 0$, $||p|| = 0 \iff c_k = 0 \forall k$ p=0 (ii) //cp/1 = // Z cckxk/ = max/cck/ $= |c| max |c_{E}|| = |c| ||p||$ $|iii\rangle ||p+g|| = \max |c_{k+1}d_{k-1}|$ $\leq \max |c_{k}| + \max |d_{k}| = ||p|| + ||g||$ (b) Let $p_n = 1 + \frac{1}{2}x + \dots + \frac{1}{n}x^n$ Then 2 pn3 is Cauchy: (m>n) $||p_n - p_m|| = \frac{1}{n!} \longrightarrow 0$ But Pr top with finite degree (if deg p = m, then $||p_n-p|| \ge m+1$) Thus $\prod_{min(n,m)} not$ complete $T_m p = \sum_{k=0}^{\infty} c_k$ $|T_m p| \leq \sum_{k=0}^{\min(n,m)} |c_k| \leq \min(r,m) ||p||$ $\leq m ||p||$ (d) sup I TAPI < n IIpil < 00 $\sup_{m} \|T_m\| \ge \sup_{m} \frac{|T_mP|}{\|p\|}, \quad p = 1 + x + x^{1} + \dots + x^{n}$ $\geq \sum_{m=1}^{\infty} |T_m p| = \min(n,m) = n \rightarrow \infty$

Area A-CAM May 2021 Solutions

H= 2f: 2->F3 2. IFWI & C(X) IFII VFEH $f_{,g} \in H$, $x \in \Omega \implies$ $|f(x) - g(x)| = |(f - g)(x)| \le C(x)$ Let $T_{x}: H \implies F$ be $T_{x}f = C$ 1a (6) $T_x f = f K$ Tx is a linear fonal (by defin Then +, sc. mult. 90 fens $\frac{g}{f} = \frac{k(\cdot, x) \in H}{\langle f, k(\cdot, x) \rangle}$ Riesz => E st YPEH f(x)(c) (by (b) K(·x \in H $K(\mathcal{A}_{X}) = \langle K(\cdot, \chi), K(\cdot, \chi) \rangle$ $= \langle k(\cdot, y), k(\cdot, x) \rangle =$ K(x y) Note: $K(\chi \cdot) = K(\cdot, \chi) \in H.$

Area A-CAM May 2021 **Solutions** 3. H complex Hilbert. A E B(H, H). IA = (A*A) 1/2 $T = A^* A \in \mathbb{B}(H, H)$ (a) Let $\langle T x, y \rangle = \langle A^{*}Ax, y \rangle = \langle Ax, Ay \rangle$ $= \langle \chi, A^*A_{\mathcal{B}} \rangle = \langle \chi, T_{\mathcal{B}} \rangle$ $= T = T^*$ $\langle T_{X}, X \rangle = ||A_{X}||^{2} \geq 0 \Longrightarrow$ 7 >0 The Hi26 \implies Thas a unique. pos sq. root (A'A)² $\in B(H, H)$ Since (A'A)² ≥ 0 , it is alt-adjoint. (b) II IAIX II² $= \langle IAIX, IAIX \rangle$ $|A|^2 x, x > = \langle T x, x \rangle_{12}$ $= \langle A^{\dagger}A_{X,X} \rangle = \langle A_{X}, A_{X} \rangle = ||A_{X}|$ Let R = R(IAI) 12 Then $H = R \oplus R^{\perp}$ $\perp \iff \langle x, y \rangle = 0 \forall y \in R(|A|)$ XER $\Leftrightarrow \langle x, y \rangle = 0$ $\forall y \in R(|A|)$ $\Leftrightarrow \langle x, |A| \ge \rangle = 0$ $\forall z \in H$ $\langle \Rightarrow \langle |A| x, \ge \rangle = 0$ $\forall z \in H$ < XEN(IAI) Thus Rt = N(IAI) and $H = R(A) \oplus N(A)$ Bat $x \in N(AI) \iff ||A|x|| = 0 \iff ||Ax||$ =0 $\Leftrightarrow x \in N(A)$ so N(IAI) = N(A)

Area A-CAM May 2021 Solutions 4. Rf = 2(x,y): y>03. u = 12TT (u(x,y) e ux dx $\int \partial_x^2 u + \partial_y^2 u = 0 \qquad R_+^2$ $\int u(x, 0) = f(x) \in H'$ (a) (a) $\partial_x u + \partial_y u = 0$ = $\partial_z \overline{u} - |3|^2 \overline{u} = 0$ $= -|3|^2 \overline{u}$ (b) Nobe: $\overline{u} = A e^{|3|y|} + B e^{+|5|y|}$ But $\overline{u}(5,0) = \widehat{f}$ & \overline{u} blows up it $B \neq 0$ $30 \quad \overline{u}(3,y) = \widehat{f}(3) e^{-|3|y|}$ ⇒> $u(x, y) = f(f(3)e^{-15/y})$ $= (2\pi)^{2} f * f_{3}(e^{-13})^{2}$ $\Delta^{\alpha} f = 13|^{2\alpha} \hat{f}$ $= \partial_{y} u(x, y) = -(2\pi)^{-1/2} f \left(\partial_{y} f_{5}(e^{-15/3}) \right)$ $(2\pi)^{2} \left(f \times \left(\partial_{y} f^{-1} \left(e^{-13} \partial_{y} \right) \right)^{2} = \hat{f} \left(\partial_{y} f^{-1} \left(e^{-13} \partial_{y} \right) \right)^{2}$ $= -131\hat{f}(f_{3}(e^{-15})) = -13\hat{f}e^{-15}\hat{f}e^{-15$ as = y = zot, we have $-2 = (-13|\hat{f}) = \Delta''^2 \hat{f}$ $\int_{\mathbb{R}^2} |\nabla u|^2 dx dy = (\nabla u, \nabla u) = -(\Delta u, u) + \int_{\mathbb{R}^2} |\nabla u, \partial u|_{\mathbb{R}^2} = -(\Delta u, u) + \int_{\mathbb{R}^2} |\nabla u, \partial u|_{\mathbb{R}^2}$ $= \int_{D} \Delta'' f f$ $= \int (\Delta'' + f) f = \int |3|^{2} f |3|^{2} f$ = 5 121/14/2 dx

Area A-CAM May 2021 **Solutions** 5. d > 9 $f \in L^2$ $\int - \delta u + \alpha u = 0$, $\partial \Omega$ à - Au, v V Ruis, V> Vu, VJ Ξ Zdu +B(u, v) = $(\nabla u, \nabla v) + \alpha < u_{3} \vee \gamma$ ANE HI V) NEH want where 20 m Lax-Milgrom. 6 (F, tena Im. N cont a give \subseteq /H' 4 e x 11 ull 11 11 11 $B(u,v) \leq$ $\|\nabla_{u}$ $\nabla v \parallel$ \leq $M \| \mathcal{M} \|$ VII IN ୪ $\Delta \gamma$ We Poincourd need a \leq $\|u\|$ + 1/2 VI 비교 2/332) <u>Supposo</u> 1 = 11 7 nett $\mathcal{N}^{\mathcal{N}}$ ≥ n(II Vull = 110 (un-≯ V ${}^{\circ}$ Ľ 0 $\Delta \sigma^{\nu}$ u = 0But $||_{v}|| =$ 1, contradiction

Area A-CAM May 2021 6. I = EO, bI $g \in L^{P}(I), p \geq 1.; f: R \rightarrow R, f(0) = 0, Lipschilt$ **Solutions** $\left(a\right)$ at [g(e) f(u(e)) de F(w) E (° => F(w) ELP *μ*∈ (° => $(F(u)) = g(s) f(u(s)) \in L^{p}$ $\in L^{\infty}$ since Lipschitz J-P-I $u = \alpha + \int_{0}^{S} g(e) f(u(e)) de$ Thun $\int u' = g(s) P(u(s))$ $\frac{1}{100} = \frac{1}{100} = \frac{1}$ 10 11 P(0, 5) 11 F(w- f(v)) 1 5(0, 5) \leq $\leq \|g\|_{P(ob)} \leq \|u - v\|_{\infty}$ $\Theta < 1$ if b small enough. $(\Theta = \frac{1}{2})$ F contractive $\|F(w)\|_{\infty} = \|F(w) - F(o) + d\|_{\infty}$ $\leq \theta \|u\|_{L^{\infty}} + \alpha \leq \Theta R + \alpha$ \rightarrow $\rightarrow R = \frac{d}{1-p} = 2d$ $\chi \leq (1-\theta)R$ Thus F: B(0) -> B(0) F: B(0) -> B(0) and I! fixed pt. in Bp(0)

CSEM Area A-CAM Preliminary Exam (CSE 386C–D)

May 31, 2022, 9:00 a.m. to 12:00 noon

Work on any 5 of the following 6 problems.

1. Let $\Omega \subset \mathbb{R}^d$ be a bounded domain with $\int_{\Omega} dx = 1$. We consider a real base field and $X \in L^2(\Omega)$ as a random variable with mean $\mu(X) = \int_{\Omega} X(x) dx$ and standard deviation $\sigma(X) = \|X - \mu(X)\|_{L^2(\Omega)}$. The covariance of $X, Y \in L^2(\Omega)$ is $\operatorname{cov}(X, Y) = \langle X - \mu(X), Y - \mu(Y) \rangle_{L^2(\Omega)}$.

- (a) State the domain and range of μ , σ , and cov. Why is $\mu \in (L^2(\Omega))^*$?
- (b) Show that σ is a seminorm on $L^2(\Omega)$. Why is it not a norm?
- (c) Show that $|\operatorname{cov}(X, Y)| \leq \sigma(X) \sigma(Y)$.
- (d) We denote the probability that $X \ge \alpha$ as $\operatorname{Prob}(X \ge \alpha) = \int_{\{x:X(x)\ge\alpha\}} dx$. Show Markov's inequality: $\operatorname{Prob}(X \ge \alpha) \le \frac{1}{\alpha}\mu(X)$.

2. Let *H* be a separable, infinite dimensional, complex Hilbert space and *T* a compact, selfadjoint operator on *H*. The Hilbert-Schmidt and spectral theorems tell us that there is a maximal orthonormal set of eigenvectors u_n with corresponding eigenvalues λ_n , $n = 1, 2, \ldots$ Let $P_n : H \to H$ be projection onto span $\{u_n\}$.

- (a) Show that for all $x \in H$, $P_n x = \langle x, u_n \rangle u_n$, $x = \sum_n P_n x$, and $T = \sum_n \lambda_n P_n$.
- (b) Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying the property that $f(\lambda) \to 0$ as $\lambda \to 0$. Define $f(T) : H \to H$ by

$$f(T) = \sum_{n} f(\lambda_n) P_n$$

Show that f(T) is well defined (i.e., the series converges). [Hint: Use Bessel's inequality.]

- (c) Show that if $f(x) = x^2$, then $f(T) = T^2$.
- **3.** Let $T: \mathcal{D}((-1,1)^2) \to \mathcal{D}(-1,1)$ be defined by $(T\varphi)(x) = \varphi(x,0)$.
- (a) Show that T is a (sequentially) continuous linear operator.
- (b) Note that the dual operator $T^* : \mathcal{D}'(-1,1) \to \mathcal{D}'((-1,1)^2)$. Determine $T^*(\delta_0)$ and $T^*(\delta'_0)$, where δ_0 is the usual Dirac point distribution at 0 in one space dimension.

4. Let $\Omega \subset \mathbb{R}^2$ be an open, connected, and bounded domain with a smooth boundary containing 0. Let

$$X = \{ f \in W^{1,3}(\Omega) : f(0) = 0 \}.$$

- (a) Use the Sobolev Embedding Theorem to conclude that $X \subset C^0(\Omega)$ and that $X \neq W^{1,3}(\Omega)$ is a Banach space.
- (b) Prove the Poincaré-like inequality $||f||_{L^3(\Omega)} \leq C ||\nabla f||_{L^3(\Omega)}$, for some constant C independent of $f \in X$.

5. Let $f \in L^2(\mathbb{R}^d)$ and consider the problem

$$-\Delta u + u = f \quad \text{in } \mathbb{R}^d.$$

- (a) Find the variational problem associated to the PDE.
- (b) Use the Lax Milgram Theorem to show the existence and uniqueness of a solution in $H^1(\mathbb{R}^d)$ to the variational problem.
- (c) Using the Fourier transform, show that the solution is actually in $H^2(\mathbb{R}^d)$.
- **6.** Given $\alpha \in \mathbb{R}$, consider the problem of finding u such that

$$\begin{cases} u'(t) = \frac{u(t)}{1 + u^2(t)}, \\ u(0) = \alpha. \end{cases}$$

- (a) By integrating, rewrite the differential equation in the fixed-point form u = F(u) for an appropriate functional F.
- (b) Show that F maps $C^{0}([0,T])$ into $C^{0}([0,T])$ for any T > 0.
- (c) Show that the problem has a unique solution $u \in C^0([0,T])$ for sufficiently small but positive T.

Area A-CAM - Solutions May 2022 1. $\int dx = 1$, $X \in L^{2}(\mathbb{R})$, $\mu(x) = \int X dx$, $\sigma(x) = || X - \mu(x)|$ $Cov(X,Y) = \langle X - \mu(X), Y - \mu(Y) \rangle$ (a) $\mu : L^2(\Omega) \rightarrow \mathbb{R}$, $G : L^2(\Omega) \rightarrow \mathbb{R}$, $cou: L^2(\Omega) \times L^2(\Omega) \rightarrow \mathbb{R}$ $\mu (\alpha X + Y) = S_{\mu}(\alpha X + Y) = \alpha S X + S Y = \alpha \mu(X) + \mu(Y)$ is longer, and [m(x)] = Sxdx < 11x|1-1111 = 11x11 (b) $G: L^2 \rightarrow L^0, \infty$ (c) $H \in (L^2)^*$ (i) $\sigma(\alpha X) = || \alpha X - \mu(\alpha X)|| = || \alpha |X - \mu(x))||$ = $|\alpha| || X - \mu(X)|| = |\alpha| \sigma(X) \quad \forall x \in |\mathbb{R}$ $(ii) \quad \sigma(x+Y) = || x+Y - \mu(x+Y)|| = || x - \mu(x) + Y - \mu(Y)||$ $\leq || x - \mu(x)|| + || Y - \mu(Y)|| = \sigma(x) + \sigma(Y).$ Note: if X = constant =0, m(x) = X, so G(X) = 0 but $X \neq 0$ (c) $|cov(x,y)| = |\langle x - \mu(x), y - \mu(y) \rangle|$ $\leq ||x - \mu(x)|| ||Y - \mu(y)|| = \sigma(x) \sigma(Y)$ (d) Prob $(X \ge d) = \int dx$ $f_X: X(x) \ge ds$ $\leq \int_{\{x: X \ge \alpha\}} \frac{X(x)}{\alpha} dx \leq \downarrow \int X dx = \downarrow \mu(X).$ since XZO

Area A-CAM - Solutions

May 2022

2.
$$T \in C(H, H)$$
 $T = T$, $\frac{1}{2} U_{n} \frac{1}{2}$, $\frac{1}{2} N_{n} \frac{1}{2} N_{n} \frac{1}{2}$, $\frac{1}{2} N_{n} \frac{1}{2} N_{n} \frac{1}{2} N_{n} \frac{1}{2}$, $\frac{1}{2} N_{n} \frac{1}{2} N_{n} \frac{1}{$

Area A-CAM - Solutions May 2022

 $3. \top : \mathcal{Q}((+, 1^2) \rightarrow \mathcal{Q}(-1, 1), \quad \forall P(x) = \mathcal{P}(x, y)$ 6) Let Pr -> P in 29(E1,1)2). Then $\|\chi^{d_1}\chi^{d_2} D_X^{\beta_1} D_X^{\beta_2} (\varphi_n - \varphi)\|_{\infty} \longrightarrow O \quad \forall d_1, d_2, \beta_1, \beta_2$ Now $\forall \alpha, \beta$ $\| x^{\alpha} D^{\beta} (T(\varphi) - T(\varphi)) \|_{0} = \| x D^{\beta} (\varphi_{n}(0, 0) - \varphi(0, 0)) \|_{0}$ $\leq \| x^{\alpha} D^{\beta} - \varphi(0, 0) - \varphi(0, 0) \|_{0} (EDD) \longrightarrow O.$ $\Rightarrow T is sog. cont. Linearity is clear.$ (b) For $\mu \in \mathcal{A}'(-1,1)$, $\Psi \in \mathcal{A}((-1,D^2))$ $(T^*\mu)(\Psi) = \mu(T\Psi)$ Thus $(T^{*}S)(\varphi) = S(T\varphi) = \varphi(0,0)$ That is, $T^{*}S = Dirac dist. at (0,0).$ $\frac{M_{0,0,0,0}}{(10,1)^{2}} = S'(10) = S'(10)$ = - 29 (0,0)

Area A-CAM - Solutions May 2022 4. <u>S</u> open, connected, Ended, ∋0, X={W'³: F(0)=03. (a) $W^{1,3}(\Omega) \hookrightarrow C^{\circ}(\Omega)$ since $mp \leq d$, he. $3.1 \geq 2$. But 22 cmosth, so W13(2) c>C(2) Thus $X \in C^{0}(\Omega)$ and $T_{0}f = f(0)$ thus W^{+} will -define contract op. Thus the second of the theory of t Then $\|f_{\mathcal{N}}\|_{W^{1/2}} \leq C \implies f_{\mathcal{N}} \longrightarrow f \quad m \quad W^{1/2}.$ Moreover $f_{n_1} \rightarrow f$ in L^3 $Vf_{n_2} \rightarrow 0$ in L^3 $\Rightarrow f_{n_1} \rightarrow f$ in $W^{1/3}$ $But <math>\nabla f_{n_2} \rightarrow 0 \Rightarrow f_{n_1} \rightarrow constant$ Since $F_{-}(o) = 0$, $f_{-} \rightarrow 0$ This contradicts that II frill, 3=1, so 11711,3 < C 117 Fl, 3 for some C>0.

Area A-CAM - Solutions May 2022 5. $-Au+u = f \in L^2(\mathbb{R}^d)$ (a) Let $v \in A(\mathbb{R}^d) \subseteq H'(\Omega)$. Then $(-\Delta u, v) = (\nabla u, \nabla v) \Longrightarrow$ $\sum Find u \in H'(\mathbb{R}^d) = f(\mathcal{F}, \mathcal{V}) \quad \forall \mathcal{V} \in H'(\mathbb{R}^d)$ $(\nabla u, \nabla \mathcal{V}) + (u, \mathcal{V}) = (f, \mathcal{V}) \quad \forall \mathcal{V} \in H'(\mathbb{R}^d)$ $(F, v) = F(v), F \in (H')^*$ since $|(F, v)| \leq ||F||_2 ||v||_1$ (6) $(\nabla u, \nabla v) + (u, v) \leq ||\nabla u|| ||\nabla v|| + ||u|| ||v||$ < 2 1/ ully / VII i continuous $(\nabla u, \nabla u) + (u, u) = ||u||_{H^1}$ coercive $\exists ! \quad sol'n \quad m \quad H^1(\mathbb{R}^d)$ C) $FT: |3|^2 \hat{u} + \hat{u} = \hat{f}$ $\hat{u} \in \frac{\hat{f}}{1 + |\hat{z}|^2}$ Now $\|\|u\|_{L^2} = \int (|1+|3|^2) |\hat{u}(3)|^2 d3$ = $\int |\hat{\varphi}(s)|^2 ds = \int |f(x)|^2 dx < \infty$ 1 $v \in H^2(\mathbb{R}^d)$

Area A-CAM - Solutions May 2022 6. $u'(t) = \frac{u(t)}{1 + u^2(t)}, u(0) = d$ a $u(t) = d + \int_{-\frac{1}{1+u^2(s)}}^{\frac{1}{2}} ds \equiv F(u)$ (b) $F: C^{\circ}(EO,TI) \longrightarrow C^{\circ}(EO,TI)$ since the integral of a cont (c) We show F is a contraction on X={u∈c°(IO,T]): ||u||_m ≤ R3 for some T,R>0. $\frac{\|F(w) - F(v)\|_{\infty}}{\|F(w) - F(v)\|_{\infty}} = \frac{\|S^{\pm}(w) - w^{2}v}{(1+w^{2} - v - w^{2}v)} \frac{\|S^{\pm}(w)\|_{\infty}}{\|S^{\pm}(w)\|_{\infty}} = \frac{\|S^{\pm}(w)\|_{\infty}}{(1+w^{2})(1+v^{2})} \frac{\|S^{\pm}(w)\|_{\infty}}{(1+w^{2})(1+w^{2})} \frac{\|S^{\pm}(w)\|_{\infty}}{(1$ $\leq T(2R+D) || u-v ||_{\infty} = O || u-v ||_{\infty}$ Moreover $\|F(w)\| = \|F(w) - F(o)\| + |\alpha| \le T(2R+1) \|w\| + |\alpha|$ $\leq \pm (2R+1)R + |k|$ Want $\Theta = T(2R+I) < I$, $T(2R+I)R+|x| \leq R$ Take $R = 2|\alpha|+1>0$. Then $|\alpha|+1$ T< $\frac{1}{4|\alpha|+3}$ and T< $\frac{1}{4|\alpha|+3}(2|\alpha|+1)$ so take the minimum of these 2. Note T>O.

CSEM Area A-CAM Preliminary Exam (CSE 386C–D)

May 15, 2023, 9:00 a.m. to 12:00 noon

Work on any 5 of the following 6 problems.

- **1.** Let X be a normed linear space and $M \subset X$ a linear subspace.
- (a) State the Hahn-Banach Theorem for normed linear spaces.
- (b) If M is closed and $x_0 \in X \setminus M$, use the Hahn-Banach Theorem to prove that there is some $f \in X^*$ satisfying $f(x_0) \neq 0$ and f(x) = 0 for any $x \in M$.
- (c) If M is not necessarily closed, prove that for any $x_0 \in X$, $x_0 \in \overline{M}$ if and only if there is no bounded linear functional f on X satisfying f(x) = 0 for any $x \in M$ but $f(x_0) \neq 0$.
- 2. Open Mapping Theorem.
- (a) State the Open Mapping Theorem.
- (b) Suppose that $\|\cdot\|$ and $\|\cdot\|'$ are two norms on a vector space X. Suppose that both $(X, \|\cdot\|)$ and $(X, \|\cdot\|')$ are complete and there is a constant C > 0 such that

 $||x|| \le C ||x||' \quad \text{for all } x \in X.$

From the Open Mapping Theorem, show that the two norms are equivalent.

(c) Use (b) to show that when $X = L^{\infty}([0,1]), (X, \|\cdot\|_{L^1})$ is not complete.

3. Let $\varphi \in C_0^{\infty}(\mathbb{R}^d)$.

(a) For $\epsilon > 0$, let $\varphi_{\epsilon}(\mathbf{x}) = \epsilon^{-d} \varphi(\epsilon^{-1} \mathbf{x})$. Show that for $f \in C^0(\mathbb{R}^d)$,

$$\lim_{\epsilon \to 0} \int_{\mathbb{R}^d} \varphi_{\epsilon}(\mathbf{x}) f(\mathbf{x}) \, d\mathbf{x} = Cf(0)$$

for some constant C. Find the constant C.

(b) Show that for any $u \in \mathcal{D}'(\mathbb{R}^d)$ and any multi-index α , $D^{\alpha}u * \varphi = u * D^{\alpha}\varphi$.

4. Let Ω be a bounded domain with a smooth boundary and let ν be the unit normal vector on its boundary. Consider the solution (u, v) of the differential problem

$$u + \Delta^2 u + w = f \quad \text{in } \Omega,$$

$$-\Delta w - u = g \quad \text{in } \Omega,$$

$$u = \nabla u \cdot \nu = 0 \quad \text{on } \partial\Omega,$$

$$w = \gamma \quad \text{on } \partial\Omega.$$

- (a) Provide an appropriate weak form for the problem. In what Sobolev spaces should u, w, f, g, γ , and the test functions lie?
- (b) Prove that there exists a unique solution to the problem.

5. Let $\phi(x) \in C(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ and $K(x) \in L^{1}(\mathbb{R})$. Use the contraction mapping principle to prove that the initial-value problem

$$\partial_t u = K * u^2, \quad x \in \mathbb{R}, \ t > 0,$$

 $u(x,0) = \phi(x)$

has a continuous and bounded solution u = u(x, t), at least up to some time $T < \infty$.

6. For any $a \in \mathbb{R}$ and $b \in \mathbb{R}$, let the Rectified Linear Unit (ReLU) function $R_{a,b} : \mathbb{R} \to \mathbb{R}$ be

$$R_{a,b}(x) = \max(ax+b,0).$$

Define

$$G = \bigg\{ \sum_{j=1}^{m} \alpha_j R_{a_j, b_j} : m \in \mathbb{N}, \ \alpha_j, a_j, b_j \in \mathbb{R} \bigg\}.$$

Clearly G consists of piecewise linear functions. In fact, $\varphi \in G$, where

$$\varphi(x) = R_{0,1}(x) - R_{1,0}(x) + R_{1,-1}(x) - R_{-1,0}(x) + R_{-1,-1}(x) = \begin{cases} 0, & |x| \ge 1, \\ 1 - |x| & |x| \le 1. \end{cases}$$

- (a) Show that G is invariant to scaling $(x \mapsto \alpha x)$ and translation $(x \mapsto x + c)$.
- (b) Show that if $g \in C([0, 1])$, then

$$\int_0^1 R_{a,b}(x) g(x) dx = 0 \quad \forall a, b \in \mathbb{R} \quad \Longrightarrow \quad g = 0.$$

(c) Let S be the set of functions in G restricted to [0, 1]. Show that S is dense in $L^2(0, 1)$. [Hint: use the density of C([0, 1]) in $L^2(0, 1)$ and (b) to show that $S^{\perp} = \{0\}$.]

CSEM Area A-CAM Preliminary Exam (CSE 386C–D)

May 20, 2024, 9:00 a.m. to 12:00 noon

Work on any 5 of the following 6 problems.

- **1.** Let X be an NLS and $Y \neq X$ a closed subspace.
- (a) Define what we mean by the distance from $x \in X$ to Y, i.e., dist(x, Y).
- (b) If θ is given with $0 < \theta < 1$, prove that there is some $x \in X$ such that ||x|| = 1 and $\operatorname{dist}(x, Y) \ge \theta$.
- (c) Must there be a unique point $x \in X$ such that dist(x, Y) = 1? Why or why not?

2. The Riesz Representation Theorem states that if H is a Hilbert space and $L \in H^*$, then there is a unique $y \in H$ such that $Lx = \langle x, y \rangle$ for all $x \in H$.

- (a) For a given $L \in H^*$, prove that the associated $y \in H$ is unique.
- (b) For a given $L \in H^*$, $L \neq 0$, prove that the associated $y \in H$ exists. [Hint: Recall that if N is the null space of L, then we expect that $y \in N^{\perp}$. Let $z \in N^{\perp}$ and consider u = (Lx)z (Lz)x.]
- (c) Show that $||L||_{H^*} = ||y||_H$.

3. Let *H* be a separable Hilbert space and *T* a positive operator on *H*. Let $\{e_n\}_{n=1}^{\infty}$ be an orthonormal base for *H* and define the trace of *T* to be

$$\operatorname{tr}(T) = \sum_{n=1}^{\infty} \langle Te_n, e_n \rangle$$

and suppose this number is finite for T.

- (a) Show that if S a positive operator on H such that $0 \le T \le S$, then $tr(T) \le tr(S)$.
- (b) Show the the trace of T is independent of which base is chosen. [Hint: Care must be taken when interchanging infinite sums, unless all the terms are positive. Use the operator $T^{1/2}$ to resolve this issue.]
- (c) If T is also compact, show that $tr(T) = \sum_{n=1}^{\infty} \lambda_n$, where λ_n are the eigenvalues of T.

4. Let $f, g \in L^1(\mathbb{R}^d)$. Recall that a continuous function ϕ on \mathbb{R}^d is said to vanish at infinity if for any $\epsilon > 0$, there is a compact set K_{ϵ} such that $|\phi(x)| < \epsilon$ for $x \notin K_{\epsilon}$. The subspace of all such continuous functions is denoted $C_v(\mathbb{R}^d)$.

- (a) Prove that $C_v(\mathbb{R}^d)$ is a closed linear subspace of $L^{\infty}(\mathbb{R}^d)$.
- (b) Prove that the Fourier transform $\hat{f} \in L^{\infty}(\mathbb{R}^d)$.
- (c) Prove that $f * g \in L^1(\mathbb{R}^d)$ directly (i.e., do not use Young's inequality) and $||f * g||_{L^1(\mathbb{R}^d)} \leq ||f||_{L^1(\mathbb{R}^d)} ||g||_{L^1(\mathbb{R}^d)}$.
- (d) Show that the Fourier transform $\widehat{f * g} = (2\pi)^{d/2} \widehat{f} \widehat{g}$.

5. Let $\Omega = [0, 1]^d$, define

$$H^1_{\#}(\Omega) = \left\{ v \in H^1_{\text{loc}}(\mathbb{R}^d) : v \text{ is periodic of period 1 in each direction and } \int_{\Omega} v \, dx = 0 \right\}.$$

- (a) Define precisely what it means for $v \in H^1(\mathbb{R}^d)$ to be periodic of period 1 in each direction.
- (b) Define the natural inner product and norm that one should use on this space.
- (c) Show that $H^1_{\#}(\Omega)$ is a Hilbert space.

6. Let $\Omega \in \mathbb{R}^d$ have a smooth boundary, V_n be the set of polynomials of degree up to n, for n = 1, 2, ..., and $f \in L^2(\Omega)$. Consider the problem: Find $u_n \in V_n$ such that

$$B(u_n, v_n) = (\nabla u_n, \nabla v_n)_{L^2(\Omega)} + (u_n, v_n)_{L^2(\Omega)} = (f, v_n)_{L^2(\Omega)} \quad \text{for all } v_n \in V_n.$$

(a) Show that there exists a unique solution for any n, and that

$$||u_n||_{H^1(\Omega)} \le ||f||_{L^2(\Omega)}$$

- (b) Show that there is $u \in H^1(\Omega)$ such that, for a subsequence, $u_n \rightharpoonup u$ weakly in $H^1(\Omega)$. Find a variational problem satisfied by u. Justify your answer.
- (c) Show that $||u u_n||_{H^1(\Omega)}$ decreases monotonically to 0 as $n \to \infty$.

1. XNLS, Y & closed. (a) dist(x, Y) = int ||x - y||b) OLDZI. Let ZEXIY. Find yo EY s.t. $||z - \gamma_0|| \leq \frac{1}{6} \operatorname{dist}(z, Y) \quad (z > 1)$ Let $x = \frac{2-100}{112-10011}$ have norm 1. Now dist $(x, Y) = ihf \| \frac{2-30}{12-30} - y \|$ = 112-you int 11 2-yo- 12-yoly 11 $= \frac{1}{\|z - y_0\|} \operatorname{dist}(z, \varphi) \in \varphi$ $\geq \frac{\theta}{\operatorname{dist}(z, \gamma)} \operatorname{dist}(z, \gamma) = \theta$ (c) No. D X NLS so not complete. In l^{ag}(R^L) unit ball is a square, so not unique ٤ or 3 In R², get points "above" and

2. Riesz. Lx= <x,y> (a) Suppose LX = <X, x> -<X, Z> VXEA Then (x, y, z) = 0 $\forall x \in A$ $\Rightarrow y - z = 0 \Rightarrow y = z$, Thus unique. (b) $L \neq 0$, N = Null(L). Let $z \in N^{\perp}$ and u = (Lx)z - (Lz)xNote: Lu= (Lx)L=-(L=)Lx =0 => nEN Thus 0= < u, 2> = (1x)=, 2> - <(12)x, 2> => (Lx)/1211 = <(L2)x,2> = < x, L2 2> Let $y = \frac{Lz}{\|z\|^2}$, so $Lx = \langle x, y \rangle$. (c) $\|L\| = \sup_{x \in H} \frac{\|Lx\|}{\|x\|} = \sup_{x \in H} \frac{\langle x, y \rangle}{\|x\|} \leq \|y\|$ But $L(\frac{\pi}{\|\eta\|}) = \frac{\langle \eta_{2} \eta_{2} \rangle}{\|\eta_{1}\|} = \|\eta_{1}\|$ $\leq \sup_{x \in H} L\left(\frac{x}{\|x\|}\right) = \|L\|$ Thus 11L11= 11-yrll.

May 2024 3. $T \ge 0$, $tr(T) = \sum_{n=1}^{\infty} \langle Te_{n} e_{n} \rangle < \infty$ (a) If OETES, then <Tengen> < <sen> sum to see $Tr(T) \leq tr(s)$. (b) Let 2fm3m=1 be another ON base $+r(T) = \sum_{n=1}^{\infty} \langle Te_n, e_n \rangle = \sum_{n=1}^{\infty} ||T'^2e_n||^2$ $=\sum_{n=1}^{\infty} \left\| \frac{1}{\sqrt{2}} \left(\sum_{m=1}^{\infty} \langle e_n, f_m \rangle f_n \right) \right\|^2$ $= \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} |\langle x_{n}, f_{m} \rangle|^{2} || T^{N_{2}} F_{m} ||^{2}$ $= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |\langle e_n, f_m \rangle|^2 ||T'_2 f_m||^2$ $\|f_{0}\|^{2} = 1$ $\|f_{m}\|^{2} = 1$ $= \sum_{m=1}^{\infty} \|T^{\gamma_{2}} f_{m}\|^{2} = f_{c}(T).$ (c) T ≥ 0 => T ce)trady. now compact => I ON base Een3 and e-values En3 <u>st.</u> $T_{\chi} = \sum_{n=1}^{\infty} \lambda_n \langle \alpha, e_n \rangle e_n$ $= \sum_{T \in \Lambda, e_n} = \lambda_n \langle e_n, e_n \rangle = \lambda_n$ $= \sum_{n=1}^{\infty} \lambda_n$

4. $P_1 q \in L'(\mathbb{R}^d), C_1 = \{\phi cont. : \forall \epsilon, [\phi(x)) \leq \epsilon for x \notin k \}$ $(a) \quad \phi, \psi \in (v_1, \lambda \in F(\lambda + 0) \Longrightarrow)$ $|\phi(x) + \psi(x)| < \varepsilon$ for $x \notin k_{\varepsilon}^{\phi} \cup k_{\varepsilon}^{\phi} = k_{\varepsilon}$ compact JAGON <E Br XEKE/2 = +++, 7 & vanishes at a, so subspace If $\phi_n \rightarrow \phi$ in L^{00} , ϕ is continuous If $\varepsilon > 0$ is given, choose $N \ge 0$ st $\|\phi_n - \phi\|_{00} \le \varepsilon$, $\forall n \ge N$ Then $[\phi(x)] \leq |\phi_N(x) - \phi(x)| + |\phi_N(x)|$ ≤ ε+ ε for × ¢ Kt => \$ vanishes at 00. 16) |\$(3) = 1/1/2 \ P(x) e - ix.3 dx ≤ 1/0/2 SIF(x) dx $\leq \frac{1}{2\pi} + \frac{1}{2} + \frac{1}{2\pi} + \frac{1}{2} +$ (c) f*g(x)=) f(x-m) g(m) dm $\int |F_{xy}(x)| dx \neq \int \int |F(x-y)| |g(y)| dy dx$ = 55 1F(x-y) dx g(y) dy $= \int ||f||_{L^{1}} g(g) dy = ||f||_{L^{1}} ||g||_{L^{1}}$ (d) $f_{xx}(s) = \frac{1}{(2\pi)^3} \int f(x-y)g(y)dy e^{-ixs}dx$ = (211/4/2) f(x-y) = i(x-y) = dx y (y) = i 3 = dy = 5 f(3) g(2) e-233 dy $= (2\pi)^{2} f_{3}$

5. D= EO'II, H# (2) = ENEH, : N bor. ? Ingx=05 (a) For almost every $x \in SZ$ and for every $\eta \in \mathbb{Z}^d$, $f(x+\eta) = f(x)$ $(b) < f, g > = \int f(x) g(x) dx + \int \nabla f \cdot \nabla g dx$ $\|f\|_{-}^{2} = \int |f|^{2} dx + \int |\nabla f|^{2} dx = \|f\|^{2}$ (c) H¹₄ is clearly a v.s. If $\xi f_n 3 \in H_{\#}^{\prime}$ is Cauchy, then $\xi f_n |_{\mathcal{B}}^{2}$ is Cauchy in $H^{1}(\mathcal{S})$, so $\exists f \in H^{\prime}(\mathcal{S})$ st. $||f_n - f||_{H^{1}(\mathcal{S})} \longrightarrow \mathbb{O}$. Moreover $\Box = \sum f'(x) qx \longrightarrow \sum f(x) qx$ Let $f(x+\eta) = p(x) \neq \eta \in \mathbb{Z}^d, x \in \Omega$. Then $f \in M_{\#}^{i}$ and $\|f_n-f\|_{H^1_{\#}} \to 0.$ Thus H_# is complete.

6. Vn polyn. dag. n Find un EVA st. $B(u_{n},v_{n})=(\nabla u_{n},\nabla v_{n})+(u_{n},v_{n})=(f,v_{n}) \quad \forall v_{n} \in V_{n}$ (a) Lax-Milgram implies Il solh, since the form B(.,.) is cont. & corrive on H', Vn SH $Moreoner, \quad v_n = u_n = \sum_{\|u_n\|_{H^1}} (f_1 u_n) \leq \frac{1}{2} |f_1|^2 + \frac{1}{2} ||u_n|_{H^1}^2$ $\| \psi_{\mathsf{N}} \|_{\mathsf{H}^1} \leq \| \varphi \|$ (b) Banach Alacque => I subary. st un - u in H' Then $(\nabla u_{k}, \nabla v_{n}) + (u_{k}, v_{n}) = (f_{2}v_{n})$ $(\nabla u_{k}, \nabla v_{n}) + (u_{k}, v_{n}) = (f_{2}v_{n})$ But polyn. dense in H', 20 $B(u,v) = (\nabla u, \nabla v) + (u,v) = (f, v) \forall v \in H'$ (c) Now Vn = Vn-1, so Golerkin L $\|u-u_n\|_{\mu}^2 = B(u-u_n,u-u_n) \stackrel{*}{=} B(u-u_n,u-u_n)$ < 1/w-unlly 1/w-unilly = $\|u - u_n\|_{H^1} \leq \|u - u_{n-1}\|_{H^1}$ Moreover, V, EH' dense -> $\|u-v_{n}\| \longrightarrow \mathcal{O}$