The following table identifies courses that qualify for the CSE certificate program. Note that this list is not inclusive and may be expanded to include other advanced courses of three credits or more as approved by the certificate program's faculty advisor. The course abbreviations in column one are consistent with the UT Undergraduate Course Catalog and descriptions of each course may be found therein.

Some courses on the approved list below may be restricted by the department offering the course. Please note that the Certificate Program CANNOT ask the department to waive prerequisites or force the department to lift restrictions on their courses. Every effort has been made to include multiple options under each category to allow students from various majors to find courses that fit within their degree program.

Highlighted courses are offered on the **SPRING 2025** course schedule.

1. Upper Division Mathematics (1 course, 3-4 credits)

M 427J	Differential Equations with Linear Algebra
M 427K	Advanced Calculus for Applications I
M 427L	Advanced Calculus for Applications II
M 340L	Matrices and Matrix Calculations
M 341	Linear Algebra and Matrix Theory
SDS 329C	Practical Linear Algebra I

2. Basic Programming (1 course 1-3 credits)

0	
BME 303	Introduction to Computing
CHE 210	Introduction to Computing
COE 301	Introduction to Computer Programming
COE 322	Scientific Computation
C E 311K	Introduction to Computer Methods
C S 303E	Elements of Computers and Programming
C S 104C	Competitive Programming
C S 105C	Computer Programming: C++
C S 312	Introduction to Programming
C S 313E	Elements of Software Design
ECE 312	Software Design and Implementation I (formerly EE 312)
GEO 325G	Computational Applications in the Geosciences
MIS 304	Introduction to Problem Solving and Programming
SDS 322	Introduction to Scientific Programming
Any course from #5 (Electives)	
Any other basic programming course as approved by the Certificate Adviser	

3. Numerical Applications (1 course, 1-3 credits)

ARE 372	Modeling of Air and Pollutant Flows in Buildings
ASE 372N	Satellite-Based Navigation
BCH 339N	Systems Biology and Bioinformatics
BIO 321G	Introduction to Computational Biology-FRI
BIO 321G	Principles of Computational Biology

BIO 337J	Computational Biology Laboratory
BME 313L	Introduction to Numerical Methods in Biomedical Engineering
BME 342	Biomechanics of Human Movement
BME 343	Biomedical Engineering Signal and Systems Analysis
BME 345	Graphics and Visualization Laboratory
BME 346	Computational Biomolecular Engineering
BME 348P	Introduction to Computational and Systems Biology
BME 350	Computational Methods for Biomedical Engineers
BME 367	Design of Artificial Organs
BME 377T	Topic: Computational Methods for Biomedical Engineers
BME 377T	Topic: Computational Modeling Bioengr and Medicine
BME 377T	Topic: Computational Modeling of the Cardiovascular System
BME 377T	Topic: Intro to Computational and Systems Biology
BME 377T	Topic: Intro to Mathematical & Physical Biology
CH 367C	Materials Chemistry-FRI
CH 368	Topic: Computational Materials-FRI
СН 369К	Techniques of Research-FRI (for credit, MUST be course on Computational Materials)
CHE 348	Numerical Methods in Chemical Engineering and Problem Solving
CHE 356	Optimization: Theory and Practice
CHE 379	Topic: Data Analytics Apps in CHE
COE 311K	Engineering Computation
COE 321K	Computational Methods for Structural Analysis (formerly ASE 321K)
COE 347	Introduction to Computational Fluid Dynamics (formerly ASE 347)
CSE 397	Computational Modeling in Bioengineering and Medicine (grad level course)
CSE 397	Topic 6: Introduction to Computational Oncology (grad level course)
C E 367R	Optimization Techniques for Transportation Engineers
C E 377K	Topic: Data Science in CAEE
C S 378	Topic: Big Data in Biology
C S 378	Topic: Energy Analytics-FRI
C S 378	<i>Topic:</i> Intro to Computational and Systems Biology
ECO 348K	Topic 1: Advanced Econometrics
ECO 348K	Topic: Applied Econometrics and Data Analysis
ECO 363C	Computational Economics
ECO 441K	Introduction to Econometrics
ECE 313	Linear Systems and Signals (formerly EE 313)
ECE 385V	Topic: Computational Neuroscience (grad level course)
E M 360	<i>Topic 13:</i> Applications of Finite Element Methods
E M 394F	Finite Element Methods (grad level course)
GEO 325K	Computational Methods
GEO 325M	Numerical Modeling in the Geosciences
GEO 347G	Climate System Modeling
GEO 365N	Seismic Data Processing
	<i>Topic:</i> Introduction to Mathematical Modeling for Geoscientists

3. Numerical Applications (cont'd)	
Mathematical Modeling in Science and Engineering	
Engineering Computational Methods	
Programming and Engineering Computational Methods	
Finite Element Method	
Simulation Modeling	
Introduction to Computational Fluid Dynamics	
Topic: Nanophotonics and Machine Learning	
Topic: Computational Neuroscience	
Topic: Computer Simulation of Neural Processes	
Topic: Neural Computation	
Topic 4: Neuroscience Data Analysis in Python	
Programming and Data Analysis for Modern Neuroscience	
Topic: Inventors Prog Practicum (to be approved by petition only – topic must be computational)	
Simulation Modeling	
Numerical Methods and Programming	
Reservoir Engineering III	
Introduction to Geostatistics (crs dropped in Fall 2022)	
Geostatistics and Data Analysis	
Topic 9: Subsurface Machine Learning	
Topic: Digital Rock Petrophysics (grad level course)	
Introduction to Computational Physics	
Applied Computational Science (crs dropped Fall 2022)	
Topic: Computational Materials-FRI	
Topic: Quant Finance: Model, Tools & Applics	
Topic 6: Optimization Methods in Finance (crs dropped Fall 2024)	
Topic 7: Computational Finance	
Topic 16: Optimization Method Finance	

3. Numerical Applications (cont'd)

4. Advanced Computing (1 course, 3 credits)

BME 377T	Topic: Computational Modeling of the Cardiovasular System
BME 377T	Topic: Intro to Computational Systems and Biology
BME 377T	Topic: Mathematical Methods for BME
CH 354M	Introduction to Computational Methods in Chemistry
CHE 379	Topic: Intelligent Systems Applications in Engineering and Science
COE 321K	Computational Methods for Structural Analysis (formerly ASE 321K)
COE 347	Introduction to Computational Fluid Dynamics (formerly ASE 347)
COE 352	Topic: Advanced Computational Engineering
COE 379L	Topic: Introduction to Machine Learning
COE 379L	Topic: Simulation-based aerodynamics design and analysis
COE 379L	Topic 1: Intro Machn Learn/Data Sci
C E 380T	Computational Environmental Fluid Mechanics (grad level course)
C S 323E	Elements of Scientific Computing
C S 329E	Topic: Elements of Data Analytics
C S 329E	Topic: Elements of Software Engineering
(cont/d next ng)	

(cont'd next pg)

4. Advanced Computing (cont'd)	
C S 330E	Elements of Software Engineering I
C S 354	Computer Graphics
C S 367	Numerical Methods
C S 373	Software Engineering
C S 377	Principles and Applications of Parallel Programming
C S 377P	Programming for Performance
C S 378	Topic: Big Data in Biology
C S 378	Topic: Intro to Computational Systems and Biology
C S 378	Topic: Programming for Correctness and Performance
ECE 360F	Introduction to Software Engineering (formerly EE 360F)
ECE 360P	Concurrent and Distributed Systems (formerly EE 360P)
ECE 379K	<i>Topic:</i> Engineering Programming Languages (formerly EE379K)
ECE 380L	Topic 5: Engineering Programming Languages (grad level course)
ECE 382V	Topic: Advanced Programming Tools (grad level course)
ECE 422C	Software Design & Implementation II (formerly E E 422C)
ECE 461P	Data Science Principles (formerly EE461P)
GEO 371T	Topic: Introduction to Machine Learning
M 348	Scientific Computation in Numerical Analysis
M 368K	Numerical Methods for Applications
M 375T	Topic: Intro to Quantum Information Science (also listed as С S 358H, PHY 341, ECE 379K)
M E 367S	Simulation Modeling
M E 369P	Application Programming for Engineers
PGE 379	Topic: High Performance Computing for Engineers
PGE 379	Topic 14: High Performance Computational Engineering
SDS 326E	Elements of Statistical Machine Learning
SDS 335	Scientific & Technical Computing
SDS 374C	Parallel Computing for Science and Engineering
SDS 374D	Distributed & Grid Computing for Science & Engineering (crs dropped in Fall 2022)
SDS 374E	Visualization and Data Analysis for Science and Engineering
SDS 375	Topic: Programming for Correctness

4. Advanced Computing (cont'd)

5. Electives (\geq 1 course, \geq 3 credits)

ASE 330M	Linear System Analysis
CSE 380	Tools and Techniques of Computational Science (grad level course)
CSE 383C	Numerical Analysis: Linear Algebra (grad level course)
CSE 383K	Numerical Analysis: Algebra and Approximation (grad level course)
CSE 386C	Methods of Applied Mathematics (grad level course)
CSE 386M	Functional Analysis in Theoretical Mechanics (grad level course)
CSE 393	Topic 1: The Finite Element Method (grad level course)
CSE 393F	Finite Element Methods (grad level course)
C S 329E	Topic: Elements of Data Analytics
C S 329E	Topic: Elements of Data Visualization
C S 337, 337H	Theory in Programming Practice
(cont'd nevt na)	

(cont'd next pg)

5. Electives	(cont'd)
--------------	----------

J. Electives (cont	
C S 363D	Introduction to Data Mining (course dropped in Fall 2022)
C S 363M	Principles of Machine Learning I
C S 378, 378H	Topic: Introduction to Data Mining
ECE 360C	Algorithms (formerly E E 360C)
ECE 461L	Software Engineering and Design Laboratory (formerly EE461L)
ECE 380L	Topic 10: Data Mining (grad level course)
GEO 352P	Python for Geoscience Research
GEO 366M	Mathematical Methods in Geophysics
GEO 371T	Python in Geoscience Research
M 346	Applied Linear Algebra
M 372K	Partial Differential Equations and Applications
M 376C	Methods of Applied Mathematics
M E 348E	Advanced Mechatronics I
M E 350R	Robot Mechanism Design
M E 366L	Operations Research Models
M E 372J	Robotics and Automation
M E 379M	Topic: Advanced Vehicle Powertrain Systems and Control
M E 379M	Topic: Data Science for Engineers
MIS 373	Topic 17: Predictive Analytics & Data Mining
NEU 340	Neural Systems III: Quantitative Tools
NEU 366M	Quantitative Methods in Neuroscience
ORI 366	Operations Research Models
SDS 322E	Elements of Data Science (replaced SDS 348 in Fall 2021)
SDS 348	Computational Biology and Bioinformatics (course replaced by SDS 322E in Fall 2021)
SDS 375	Topic: Data Visualization in R
SDS 394	Scientific & Technical Computing (grad level course)
SDS 394C	Parallel Computing for Scientists and Engineers (grad level course)
SDS 394D	Distributed and Grid Computing for Scientists and Engineers (grad level course)
	urse from #3 (Numerical Applications) or #4 (Advanced Computing)
Any graduate leve	el scientific computing course, with consent of the Certificate Adviser

6. Scientific Computing Project (1 course, 3 credits)

Must be supervised by a member of the CSEM GSC Faculty.	
USE 370	Individual Reading & Research
	(registration restricted until Scientifc Computing Project Approval form received)
•	Any 3 credit, advanced undergraduate level individual instruction course in a
	participating department. Check with academic advisor and course schedule for
	offerings.